Matching Items (7)
Filtering by

Clear all filters

156156-Thumbnail Image.png
Description
The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the

The ultimate goal of human movement control research is to understand how natural movements performed in daily reaching activities, are controlled. Natural movements require coordination of multiple degrees of freedom (DOF) of the arm. Patterns of arm joint control were studied during daily functional tasks, which were performed through the rotation of seven DOF in the arm. Analyzed movements which imitated the following 3 activities of daily living: moving an empty soda can from a table and placing it on a further position; placing the empty soda can from initial position at table to a position at shoulder level on a shelf; and placing the empty soda can from initial position at table to a position at eye level on a shelf. Kinematic and kinetic analyses were conducted for these three movements. The studied kinematic characteristics were: hand trajectory in the sagittal plane, displacements of the 7 DOF, and contribution of each DOF to hand velocity. The kinetic analysis involved computation of 3-dimensional vectors of muscle torque (MT), interaction torque (IT), gravity torque (GT), and net torque (NT) at the shoulder, elbow, and wrist. Using the relationship NT = MT + GT + IT, the role of active control and passive factors (gravitation and inter-segmental dynamics) in rotation of each joint by computing MT contribution (MTC) to NT was assessed. MTC was computed using the ratio of the signed MT projection on NT to NT magnitude. Despite a variety of joint movements available across the different tasks, 3 patterns of shoulder and elbow coordination prevailed in each movement: 1) active rotation of the shoulder and predominantly passive rotation of the elbow; 2) active rotation of the elbow and predominantly passive rotation of the shoulder; and 3) passive rotation of both joints. Analysis of wrist control suggested that MT mainly compensates for passive torque and provides adjustment of wrist motion according to requirements of each task. In conclusion, it was observed that the 3 shoulder-elbow coordination patterns (during which at least one joint moved) passively represented joint control primitives, underlying the performance of well-learned arm movements, although these patterns may be less prevalent during non-habitual movements.
ContributorsSansgiri, Dattaraj (Author) / Dounskaia, Natalia (Thesis advisor) / Schaefer, Sydney (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
156964-Thumbnail Image.png
Description
Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane

Proprioception is the sense of body position, movement, force, and effort. Loss of proprioception can affect planning and control of limb and body movements, negatively impacting activities of daily living and quality of life. Assessments employing planar robots have shown that proprioceptive sensitivity is directionally dependent within the horizontal plane however, few studies have looked at proprioceptive sensitivity in 3d space. In addition, the extent to which proprioceptive sensitivity is modifiable by factors such as exogenous neuromodulation is unclear. To investigate proprioceptive sensitivity in 3d we developed a novel experimental paradigm employing a 7-DoF robot arm, which enables reliable testing of arm proprioception along arbitrary paths in 3d space, including vertical motion which has previously been neglected. A participant’s right arm was coupled to a trough held by the robot that stabilized the wrist and forearm, allowing for changes in configuration only at the elbow and shoulder. Sensitivity to imposed displacements of the endpoint of the arm were evaluated using a “same/different” task, where participant’s hands were moved 1-4 cm from a previously visited reference position. A measure of sensitivity (d’) was compared across 6 movement directions and between 2 postures. For all directions, sensitivity increased monotonically as the distance from the reference location increased. Sensitivity was also shown to be anisotropic (directionally dependent) which has implications for our understanding of the planning and control of reaching movements in 3d space.

The effect of neuromodulation on proprioceptive sensitivity was assessed using transcutaneous electrical nerve stimulation (TENS), which has been shown to have beneficial effects on human cognitive and sensorimotor performance in other contexts. In this pilot study the effects of two frequencies (30hz and 300hz) and three electrode configurations were examined. No effect of electrode configuration was found, however sensitivity with 30hz stimulation was significantly lower than with 300hz stimulation (which was similar to sensitivity without stimulation). Although TENS was shown to modulate proprioceptive sensitivity, additional experiments are required to determine if TENS can produce enhancement rather than depression of sensitivity which would have positive implications for rehabilitation of proprioceptive deficits arising from stroke and other disorders.
ContributorsKlein, Joshua (Author) / Buneo, Christopher (Thesis advisor) / Helms-Tillery, Stephen (Committee member) / Kleim, Jeffrey (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2018
136487-Thumbnail Image.png
Description
Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative

Robotic rehabilitation for upper limb post-stroke recovery is a developing technology. However, there are major issues in the implementation of this type of rehabilitation, issues which decrease efficacy. Two of the major solutions currently being explored to the upper limb post-stroke rehabilitation problem are the use of socially assistive rehabilitative robots, robots which directly interact with patients, and the use of exoskeleton-based systems of rehabilitation. While there is great promise in both of these techniques, they currently lack sufficient efficacy to objectively justify their costs. The overall efficacy to both of these techniques is about the same as conventional therapy, yet each has higher overhead costs that conventional therapy does. However there are associated long-term cost savings in each case, meaning that the actual current viability of either of these techniques is somewhat nebulous. In both cases, the problems which decrease technique viability are largely related to joint action, the interaction between robot and human in completing specific tasks, and issues in robot adaptability that make joint action difficult. As such, the largest part of current research into rehabilitative robotics aims to make robots behave in more "human-like" manners or to bypass the joint action problem entirely.
ContributorsRamakrishna, Vijay Kambhampati (Author) / Helms Tillery, Stephen (Thesis director) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / Economics Program in CLAS (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136952-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
136933-Thumbnail Image.png
Description
Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has

Motor behavior is prone to variable conditions and deviates further in disorders affecting the nervous system. A combination of environmental and neural factors impacts the amount of uncertainty. Although the influence of these factors on estimating endpoint positions have been examined, the role of limb configuration on endpoint variability has been mostly ignored. Characterizing the influence of arm configuration (i.e. intrinsic factors) would allow greater comprehension of sensorimotor integration and assist in interpreting exaggerated movement variability in patients. In this study, subjects were placed in a 3-D virtual reality environment and were asked to move from a starting position to one of three targets in the frontal plane with and without visual feedback of the moving limb. The alternating of visual feedback during trials increased uncertainty between the planning and execution phases. The starting limb configurations, adducted and abducted, were varied in separate blocks. Arm configurations were setup by rotating along the shoulder-hand axis to maintain endpoint position. The investigation hypothesized: 1) patterns of endpoint variability of movements would be dependent upon the starting arm configuration and 2) any differences observed would be more apparent in conditions that withheld visual feedback. The results indicated that there were differences in endpoint variability between arm configurations in both visual conditions, but differences in variability increased when visual feedback was withheld. Overall this suggests that in the presence of visual feedback, planning of movements in 3D space mostly uses coordinates that are arm configuration independent. On the other hand, without visual feedback, planning of movements in 3D space relies substantially on intrinsic coordinates.
ContributorsRahman, Qasim (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
154664-Thumbnail Image.png
Description
Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough

Long-term monitoring of deep brain structures using microelectrode implants is critical for the success of emerging clinical applications including cortical neural prostheses, deep brain stimulation and other neurobiology studies such as progression of disease states, learning and memory, brain mapping etc. However, current microelectrode technologies are not capable enough of reaching those clinical milestones given their inconsistency in performance and reliability in long-term studies. In all the aforementioned applications, it is important to understand the limitations & demands posed by technology as well as biological processes. Recent advances in implantable Micro Electro Mechanical Systems (MEMS) technology have tremendous potential and opens a plethora of opportunities for long term studies which were not possible before. The overall goal of the project is to develop large scale autonomous, movable, micro-scale interfaces which can seek and monitor/stimulate large ensembles of precisely targeted neurons and neuronal networks that can be applied for brain mapping in behaving animals. However, there are serious technical (fabrication) challenges related to packaging and interconnects, examples of which include: lack of current industry standards in chip-scale packaging techniques for silicon chips with movable microstructures, incompatible micro-bonding techniques to elongate current micro-electrode length to reach deep brain structures, inability to achieve hermetic isolation of implantable devices from biological tissue and fluids (i.e. cerebrospinal fluid (CSF), blood, etc.). The specific aims are to: 1) optimize & automate chip scale packaging of MEMS devices with unique requirements not amenable to conventional industry standards with respect to bonding, process temperature and pressure in order to achieve scalability 2) develop a novel micro-bonding technique to extend the length of current polysilicon micro-electrodes to reach and monitor deep brain structures 3) design & develop high throughput packaging mechanism for constructing a dense array of movable microelectrodes. Using a combination of unique micro-bonding technique which involves conductive thermosetting epoxy’s with hermetically sealed support structures and a highly optimized, semi-automated, 90-minute flip-chip packaging process, I have now extended the repertoire of previously reported movable microelectrode arrays to bond conventional stainless steel and Pt/Ir microelectrode arrays of desired lengths to steerable polysilicon shafts. I tested scalable prototypes in rigorous bench top tests including Impedance measurements, accelerated aging and non-destructive testing to assess electrical and mechanical stability of micro-bonds under long-term implantation. I propose a 3D printed packaging method allows a wide variety of electrode configurations to be realized such as a rectangular or circular array configuration or other arbitrary geometries optimal for specific regions of the brain with inter-electrode distance as low as 25 um with an unprecedented capability of seeking and recording/stimulating targeted single neurons in deep brain structures up to 10 mm deep (with 6 μm displacement resolution). The advantage of this computer controlled moveable deep brain electrodes facilitates potential capabilities of moving past glial sheath surrounding microelectrodes to restore neural connection, counter the variabilities in signal amplitudes, and enable simultaneous recording/stimulation at precisely targeted layers of brain.
ContributorsPalaniswamy, Sivakumar (Author) / Muthuswamy, Jitendran (Thesis advisor) / Buneo, Christopher (Committee member) / Abbas, James (Committee member) / Arizona State University (Publisher)
Created2016
157533-Thumbnail Image.png
Description
Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer

Wearable assistive devices have been greatly improved thanks to advancements made in soft robotics, even creation soft extra arms for paralyzed patients. Grasping remains an active area of research of soft extra limbs. Soft robotics allow the creation of grippers that due to their inherit compliance making them lightweight, safer for human interactions, more robust in unknown environments and simpler to control than their rigid counterparts. A current problem in soft robotics is the lack of seamless integration of soft grippers into wearable devices, which is in part due to the use of elastomeric materials used for the creation of most of these grippers. This work introduces fabric-reinforced textile actuators (FRTA). The selection of materials, design logic of the fabric reinforcement layer and fabrication method are discussed. The relationship between the fabric reinforcement characteristics and the actuator deformation is studied and experimentally verified. The FRTA are made of a combination of a hyper-elastic fabric material with a stiffer fabric reinforcement on top. In this thesis, the design, fabrication, and evaluation of FRTAs are explored. It is shown that by varying the geometry of the reinforcement layer, a variety of motion can be achieve such as axial extension, radial expansion, bending, and twisting along its central axis. Multi-segmented actuators can be created by tailoring different sections of fabric-reinforcements together in order to generate a combination of motions to perform specific tasks. The applicability of this actuators for soft grippers is demonstrated by designing and providing preliminary evaluation of an anthropomorphic soft robotic hand capable of grasping daily living objects of various size and shapes.
ContributorsLopez Arellano, Francisco Javier (Author) / Santello, Marco (Thesis advisor) / Zhang, Wenlong (Thesis advisor) / Buneo, Christopher (Committee member) / Arizona State University (Publisher)
Created2019