Matching Items (45)
Filtering by

Clear all filters

156687-Thumbnail Image.png
Description
Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an

Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an inconvenient necessity in many metal AM parts. These sacrificial structures are used to fabricate large overhangs, anchor the part to the build substrate, and provide a heat pathway to avoid warping. Polymers AM has addressed this issue by using support material that is soluble in an electrolyte that the base material is not. In contrast, metals AM has traditionally approached support removal using time consuming, costly methods such as electrical discharge machining or a dremel.

This work introduces dissolvable supports to single- and multi-material metals AM. The multi-material approach uses material choice to design a functionally graded material where corrosion is the functionality being varied. The single-material approach is the primary focus of this thesis, leveraging already common post-print heat treatments to locally alter the microstructure near the surface. By including a sensitizing agent in the ageing heat treatment, carbon is diffused into the part decreasing the corrosion resistance to a depth equal to at least half the support thickness. In a properly chosen electrolyte, this layer is easily chemically, or electrochemically removed. Stainless steel 316 (SS316) and Inconel 718 are both investigated to study this process using two popular alloys. The microstructure evolution and corrosion properties are investigated for both. For SS316, the effect of applied electrochemical potential is investigated to describe the varying corrosion phenomena induced, and the effect of potential choice on resultant roughness. In summary, a new approach to remove supports from metal AM parts is introduced to decrease costs and further the field of metals AM by expanding the design space.
ContributorsLefky, Christopher (Author) / Hildreth, Owen (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Rykaczewski, Konrad (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
133366-Thumbnail Image.png
Description
The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later.

The objective of this project was to design an electrically driven centrifugal pump for the Daedalus Astronautics @ASU hybrid rocket engine (HRE). The pump design was purposefully simplified due to time, fabrication, calculation, and capability constraints, which resulted in a lower fidelity design, with the option to be improved later. The impeller, shroud, volute, shaft, motor, and ESC were the main focuses of the pump assembly, but the seals, bearings, lubrication methods, and flow path connections were considered as elements which would require future attention. The resulting pump design is intended to be used on the Daedalus Astronautics HRE test cart for design verification. In the future, trade studies and more detailed analyses should and will be performed before this pump is integrated into the Daedalus Astronautics flight-ready HRE.
ContributorsShillingburg, Ryan Carl (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
136627-Thumbnail Image.png
Description
This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an

This thesis focused on understanding how humans visually perceive swarm behavior through the use of swarm simulations and gaze tracking. The goal of this project was to determine visual patterns subjects display while observing and supervising a swarm as well as determine what swarm characteristics affect these patterns. As an ultimate goal, it was hoped that this research will contribute to optimizing human-swarm interaction for the design of human supervisory controllers for swarms. To achieve the stated goals, two investigations were conducted. First, subjects gaze was tracked while observing a simulated swarm as it moved across the screen. This swarm changed in size, disturbance level in the position of the agents, speed, and path curvature. Second, subjects were asked to play a supervisory role as they watched a swarm move across the screen toward targets. The subjects determined whether a collision would occur and with which target while their responses as well as their gaze was tracked. In the case of an observatory role, a model of human gaze was created. This was embodied in a second order model similar to that of a spring-mass-damper system. This model was similar across subjects and stable. In the case of a supervisory role, inherent weaknesses in human perception were found, such as the inability to predict future position of curved paths. These findings are discussed in depth within the thesis. Overall, the results presented suggest that understanding human perception of swarms offers a new approach to the problem of swarm control. The ability to adapt controls to the strengths and weaknesses could lead to great strides in the reduction of operators in the control of one UAV, resulting in a move towards one man operation of a swarm.
ContributorsWhitton, Elena Michelle (Author) / Artemiadis, Panagiotis (Thesis director) / Berman, Spring (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
133953-Thumbnail Image.png
Description
The role of robotics mobility is essential in the world of research because it allows humans to perform jobs that are dull, dirty, or dangerous without being physically present. A typical robot environment is one that is smooth and predictable. Screw-powered vehicles (SPV's) have commonly been used in these predictable

The role of robotics mobility is essential in the world of research because it allows humans to perform jobs that are dull, dirty, or dangerous without being physically present. A typical robot environment is one that is smooth and predictable. Screw-powered vehicles (SPV's) have commonly been used in these predictable environment situations such as terrestrial applications like mud and snow. However, a gap remains in SPV's traversing complex environments, particularly debris and granular material. The goal is to study the characteristics of how a SPV might move and generate force in such a granular environment for Earth and space. In our study, the chosen granular environment is soda-lime glass beads for easy characterization. This study with glass beads focuses on two separate approaches. The first approach is using a single screw rotating while the apparatus remains static and analyzing the forces that impact the screw. The second approach includes using a full body craft with two double helix screws and analyzing the translational velocity of the craft. This study presents both experimental and computational results using simulations with Multi-Body Dynamics (MBD) and Discrete Element Method (DEM) software packages to investigate the trends of SPV's in a granular environment.
ContributorsRamirez, Sierra Monique (Author) / Marvi, Hamid (Thesis director) / Emady, Heather (Committee member) / Thoesen, Andrew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137299-Thumbnail Image.png
Description
This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of

This thesis focused on grasping tasks with the goal of investigating, analyzing, and quantifying human catching trends by way of a mathematical model. The aim of this project was to study human trends in a dynamic grasping task (catching a rolling ball), relate those discovered trends to kinematic characteristics of the object, and use this relation to control a robot hand in real time. As an ultimate goal, it was hoped that this research will aide in furthering the bio-inspiration in robot control methods. To achieve the above goal, firstly a tactile sensing glove was developed. This instrument allowed for in depth study of human reactionary grasping movements when worn by subjects during experimentation. This sensing glove system recorded force data from the palm and motion data from four fingers. From these data sets, temporal trends were established relating to when subjects initiated grasping during each trial. Moreover, optical tracking was implemented to study the kinematics of the moving object during human experiments and also to close the loop during the control of the robot hand. Ultimately, a mathematical bio-inspired model was created. This was embodied in a two-term decreasing power function which related the temporal trend of wait time to the ball initial acceleration. The wait time is defined as the time between when the experimental conductor releases the ball and when the subject begins to initiate grasping by closing their fingers, over a distance of four feet. The initial acceleration is the first acceleration value of the object due to the force provided when the conductor throws the object. The distance over which the ball was thrown was incorporated into the model. This is discussed in depth within the thesis. Overall, the results presented here show promise for bio-inspired control schemes in the successful application of robotic devices. This control methodology will ideally be developed to move robotic prosthesis past discrete tasks and into more complicated activities.
ContributorsCard, Dillon (Co-author) / Mincieli, Jennifer (Co-author) / Artemiadis, Panagiotis (Thesis director) / Santos, Veronica (Committee member) / Middleton, James (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-05
137175-Thumbnail Image.png
Description
The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away

The purpose of this project is to design a waterproof magnetic coupling that will allow the actuators on remotely operated vehicles (ROV) to remain water tight in extreme underwater conditions for longs periods of time. ROVs are tethered mobile robots controlled and powered by an operator from some distance away at the surface of the water. These vehicles all require some method for transmitting power to the surrounding water to interact with their environment, such as in thrusters for propulsion or a claw for manipulation. Many commercially available thrusters, for example, use shaft seals to transfer power through a waterproof housing to the adjacent water. Even though this works excellently for many of them, I propose that having a static seal and transmitting the power from the motor to the shaft through magnetic coupling will allow a much greater depth at which they are waterproof to be achieved. In addition, it will not require the chronic maintenance that dynamic shaft seals entail, making long scientific endeavors possible.
ContributorsHouda, Jonathon Jacob (Author) / Foy, Joseph (Thesis director) / Zhu, Haolin (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137098-Thumbnail Image.png
Description
This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work

This paper summarizes the [1] ideas behind, [2] needs, [3] development, and [4] testing of 3D-printed sensor-stents known as Stentzors. This sensor was successfully developed entirely from scratch, tested, and was found to have an output of 3.2*10-6 volts per RMS pressure in pascals. This paper also recommends further work to render the Stentzor deployable in live subjects, including [1] further design optimization, [2] electrical isolation, [3] wireless data transmission, and [4] testing for aneurysm prevention.
ContributorsMeidinger, Aaron Michael (Author) / LaBelle, Jeffrey (Thesis director) / Frakes, David (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2014-05
137106-Thumbnail Image.png
Description
The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation

The goal of this project was to use the sense of touch to investigate tactile cues during multidigit rotational manipulations of objects. A robotic arm and hand equipped with three multimodal tactile sensors were used to gather data about skin deformation during rotation of a haptic knob. Three different rotation speeds and two levels of rotation resistance were used to investigate tactile cues during knob rotation. In the future, this multidigit task can be generalized to similar rotational tasks, such as opening a bottle or turning a doorknob.
ContributorsChalla, Santhi Priya (Author) / Santos, Veronica (Thesis director) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor)
Created2014-05
134604-Thumbnail Image.png
Description
In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel

In this analysis, materials capable of being 3D printed such as acrylonitrile-butadiene styrene (ABS), polyethylene terephthalate-glycol (PETG), and polylactic acid (PLA) were analyzed mathematically to determine their potential application as a fuel source for a hybrid rocket engine currently being developed by Daedalus Astronautics. By developing a 3D printed fuel option, new fuel grain geometries can be manufactured and tested that have the potential to greatly improve regression and flow characteristics of hybrid rockets. In addition, 3D printed grains have been shown to greatly reduce manufacturing time while improving grain-to-grain consistency. In the end, it was found that ABS, although the most difficult material to work with, would likely provide the best results as compared to an HTPB baseline. This is because after conducting a heat conservation analysis similar to that employed by NASA's chemical equilibrium with applications code (CEA), ABS was shown to operate at similarly high levels of specific impulse at approximately the same oxidizer-to-fuel ratio, meaning the current Daedalus test setup for HTPB would be applicable to ABS. In addition, PLA was found to require a far lower oxidizer-to-fuel ratio to achieve peak specific impulse than any of the other fuels analyzed leading to the conclusion that in a flight-ready engine it would likely require less oxidizer and pressurization mass, and therefore, less overall system mass, to achieve thrust levels similar to ABS and HTPB. By improving the thrust-to-weight ratio in this way a more efficient engine could be developed. Following these results, future works will include the hot-fire testing of the four fuel options to verify the analysis method used. Additionally, the ground work has been set for future analysis and development of complex fuel port geometries which have been shown to further improve flight characteristics.
ContributorsWinsryg, Benjamin Rolf (Author) / White, Daniel (Thesis director) / Brunacini, Lauren (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134393-Thumbnail Image.png
Description
Walking ability is a complex process that is essential to humans, critical for performing a range of everyday tasks and enables a healthy, independent lifestyle. Human gait has evolved to be robust, adapting to a wide range of external stimuli, including variable walking surface compliance. Unfortunately, many people suffer from

Walking ability is a complex process that is essential to humans, critical for performing a range of everyday tasks and enables a healthy, independent lifestyle. Human gait has evolved to be robust, adapting to a wide range of external stimuli, including variable walking surface compliance. Unfortunately, many people suffer from impaired gait as a result of conditions such as stroke. For these individuals, recovering their gait is a priority and a challenge. The ASU Variable Stiffness Treadmill (VST) is a device that is able to the change its surface compliance through its unique variable stiffness mechanism. By doing this, the VST can be used to investigate gait and has potential as a rehabilitation tool. The objective of this research is to design a variable damping mechanism for the VST, which addresses the need to control effective surface damping, the only form of mechanical impedance that the VST does not currently control. Thus, this project will contribute toward the development of the Variable Impedance Treadmill (VIT), which will encompass a wider range of variable surface compliance and enable all forms of impedance to be con- trolled for the first time. To achieve this, the final design of the mechanism will employ eddy current damping using several permanent magnets mounted to the treadmill and a large copper plate stationed on the ground. Variable damping is obtained by using lead screw mechanisms to remove magnets from acting on the copper plate, which effectively eliminates their effect on damping and changes the overall treadmill surface damping. Results from experimentation validate the mechanism's ability to provide variable damping to the VST. A model for effective surface damping is generated based on open-loop characterization experiments and is generalized for future experimental setups. Overall, this project progresses to the development of the VIT and has potential applications in walking surface simulation, gait investigation, and robot-assisted rehabilitation technology.
ContributorsFou, Linda Guo (Author) / Artemiadis, Panagiotis (Thesis director) / Lee, Hyunglae (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05