Matching Items (5)
Filtering by

Clear all filters

133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147676-Thumbnail Image.png
Description

A primary need of Forensic science is to individualize missing persons that cannot be identified after death. With the use of advanced technology, Radio Frequency Identification (RFID) implant chips can drastically improve digital tracking and enable robust biological and legal identification. In this paper, I will discuss applications between different

A primary need of Forensic science is to individualize missing persons that cannot be identified after death. With the use of advanced technology, Radio Frequency Identification (RFID) implant chips can drastically improve digital tracking and enable robust biological and legal identification. In this paper, I will discuss applications between different microchip technologies and indicate reasons why the RFID chip is more useful for forensic science. My results state that an RFID chip is significantly more capable of integrating a mass volume of background information, and can utilize implanted individuals’ DNA profiles to decrease the missing persons database backlogs. Since today’s society uses a lot of digital devices that can ultimately identify people by simple posts or geolocation, Forensic Science can harness that data as an advantage to help serve justice for the public in giving loved ones closure.

ContributorsChastain, Hope Natasha (Author) / Kanthswamy, Sree (Thesis director) / Oldt, Robert (Committee member) / School of Mathematical and Natural Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147715-Thumbnail Image.png
Description

A description of the robotics principles, actuators, materials, and programming used to test the durability of dendritic identifiers to be used in the produce supply chain. This includes the application of linear and rotational servo motors, PWM control of a DC motor, and hall effect sensors to create an encoder.

ContributorsRobertson, Stephen (Author) / Kozicki, Michael (Thesis director) / Manfredo, Mark (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132326-Thumbnail Image.png
Description
The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using

The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using LQR methodology. A prototype was then built and tested to exhibit desired reference command following and disturbance attenuation.
ContributorsKapron, Mark Andrew (Author) / Rodriguez, Armando (Thesis director) / Artemiadis, Panagiotis (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
131247-Thumbnail Image.png
Description
Metallically embedded dendritic structures have the potential to become a cost-effective means of conducting microwave frequency identification. They are grown quickly and contain no extra circuitry. However, their reaction to microwave frequency signatures has been unknown. Fractals Unlimited (the thesis group) aimed to test the viability of the dendritic structures

Metallically embedded dendritic structures have the potential to become a cost-effective means of conducting microwave frequency identification. They are grown quickly and contain no extra circuitry. However, their reaction to microwave frequency signatures has been unknown. Fractals Unlimited (the thesis group) aimed to test the viability of the dendritic structures to produce unique electromagnetic signatures through the transmission and reflection of microwaves. This report will detail the work that was done by one team member throughout the last two semesters.
ContributorsEnriquez, Eric Antonio (Co-author) / Kim, Gyoungjae (Co-author) / Martin, Aston (Co-author) / Tennison, William (Co-author) / Trichopolous, Georgios (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05