Matching Items (6)

Filtering by

Clear all filters

158901-Thumbnail Image.png

Design, Development, and Modeling, of a Novel Underwater Vehicle for Autonomous Reef Monitoring

Description

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data

A novel underwater, open source, and configurable vehicle that mimics and leverages advances in quad-copter controls and dynamics, called the uDrone, was designed, built and tested. This vehicle was developed to aid coral reef researchers in collecting underwater spectroscopic data for the purpose of monitoring coral reef health. It is designed with an on-board integrated sensor system to support both automated navigation in close proximity to reefs and environmental observation. Additionally, the vehicle can serve as a testbed for future research in the realm of programming for autonomous underwater navigation and data collection, given the open-source simulation and software environment in which it was developed. This thesis presents the motivation for and design components of the new vehicle, a model governing vehicle dynamics, and the results of two proof-of-concept simulation for automated control.

Contributors

Agent

Created

Date Created
2020

158648-Thumbnail Image.png

Coordinated Navigation and Localization of an Autonomous Underwater Vehicle Using an Autonomous Surface Vehicle in the OpenUAV Simulation Framework

Description

The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and

The need for incorporating game engines into robotics tools becomes increasingly crucial as their graphics continue to become more photorealistic. This thesis presents a simulation framework, referred to as OpenUAV, that addresses cloud simulation and photorealism challenges in academic and research goals. In this work, OpenUAV is used to create a simulation of an autonomous underwater vehicle (AUV) closely following a moving autonomous surface vehicle (ASV) in an underwater coral reef environment. It incorporates the Unity3D game engine and the robotics software Gazebo to take advantage of Unity3D's perception and Gazebo's physics simulation. The software is developed as a containerized solution that is deployable on cloud and on-premise systems.

This method of utilizing Gazebo's physics and Unity3D perception is evaluated for a team of marine vehicles (an AUV and an ASV) in a coral reef environment. A coordinated navigation and localization module is presented that allows the AUV to follow the path of the ASV. A fiducial marker underneath the ASV facilitates pose estimation of the AUV, and the pose estimates are filtered using the known dynamical system model of both vehicles for better localization. This thesis also investigates different fiducial markers and their detection rates in this Unity3D underwater environment. The limitations and capabilities of this Unity3D perception and Gazebo physics approach are examined.

Contributors

Agent

Created

Date Created
2020

158614-Thumbnail Image.png

Environment Sensor Coverage using Multi-Agent Headings

Description

This work describes an approach for distance computation between agents in a

multi-agent swarm. Unlike other approaches, this work relies solely on signal Angleof-

Arrival (AoA) data and local trajectory data. Each agent in the swarm is able

to discretely determine distance and

This work describes an approach for distance computation between agents in a

multi-agent swarm. Unlike other approaches, this work relies solely on signal Angleof-

Arrival (AoA) data and local trajectory data. Each agent in the swarm is able

to discretely determine distance and bearing to every other neighbor agent in the

swarm. From this information, I propose a lightweight method for sensor coverage

of an unknown area based on the work of Sameera Poduri. I also show that this

technique performs well with limited calibration distances.

Contributors

Agent

Created

Date Created
2020

Rock Traits from Machine Learning: Application to Rocky Fault Scarps

Description

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at

Rock traits (grain size, shape, orientation) are fundamental indicators of geologic processes including geomorphology and active tectonics. Fault zone evolution, fault slip rates, and earthquake timing are informed by examinations of discontinuities in the displacements of the Earth surface at fault scarps. Fault scarps indicate the structure of fault zones fans, relay ramps, and double faults, as well as the surface process response to the deformation and can thus indicate the activity of the fault zone and its potential hazard. “Rocky” fault scarps are unusual because they share characteristics of bedrock and alluvial fault scarps. The Volcanic Tablelands in Bishop, CA offer a natural laboratory with an array of rocky fault scarps. Machine learning mask-Region Convolutional Neural Network segments an orthophoto to identify individual particles along a specific rocky fault scarp. The resulting rock traits for thousands of particles along the scarp are used to develop conceptual models for rocky scarp geomorphology and evolution. In addition to rocky scarp classification, these tools may be useful in many sedimentary and volcanological applications for particle mapping and characterization.

Contributors

Agent

Created

Date Created
2020

168402-Thumbnail Image.png

Navigation and Dense Semantic Mapping with Autonomous Robots for Environmental Monitoring

Description

Autonomous Robots have a tremendous potential to assist humans in environmental monitoring tasks. In order to generate meaningful data for humans to analyze, the robots need to collect accurate data and develop reliable representation of the environment. This is achieved

Autonomous Robots have a tremendous potential to assist humans in environmental monitoring tasks. In order to generate meaningful data for humans to analyze, the robots need to collect accurate data and develop reliable representation of the environment. This is achieved by employing scalable and robust navigation and mapping algorithms that facilitate acquiring and understanding data collected from the array of on-board sensors. To this end, this thesis presents navigation and mapping algorithms for autonomous robots that can enable robot navigation in complexenvironments and develop real time semantic map of the environment respectively. The first part of the thesis presents a novel navigation algorithm for an autonomous underwater vehicle that can maintain a fixed distance from the coral terrain while following a human diver. Following a human diver ensures that the robot would visit all important sites in the coral reef while maintaining a constant distance from the terrain reduces heterscedasticity in the measurements. This algorithm was tested on three different synthetic terrains including a real model of a coral reef in Hawaii. The second part of the thesis presents a dense semantic surfel mapping technique based on top of a popular surfel mapping algorithm that can generate meaningful maps in real time. A semantic mask from a depth aligned RGB-D camera was used to assign labels
to the surfels which were then probabilistically updated with multiple measurements. The mapping algorithm was tested with simulated data from an RGB-D camera and the results were analyzed.

Contributors

Agent

Created

Date Created
2021

168636-Thumbnail Image.png

Sagittal Plane Dynamic Modeling and Control of Aerial Manipulator for Phytobiopsy

Description

The ability for aerial manipulators to stay aloft while interacting with dynamic environments is critical for successfully in situ data acquisition methods in arboreal environments. One widely used platform utilizes a six degree of freedom manipulator attached to quadcoper or

The ability for aerial manipulators to stay aloft while interacting with dynamic environments is critical for successfully in situ data acquisition methods in arboreal environments. One widely used platform utilizes a six degree of freedom manipulator attached to quadcoper or octocopter, to sample a tree leaf by maintaining the system in a hover while the arm pulls the leaf for a sample. Other system are comprised of simpler quadcopter with a fixed mechanical device to physically cut the leaf while the system is manually piloted. Neither of these common methods account or compensate for the variation of inherent dynamics occurring in the arboreal-aerial manipulator interaction effects. This research proposes force and velocity feedback methods to control an aerial manipulation platform while allowing waypoint navigation within the work space to take place. Using these methods requires minimal knowledge of the system and the dynamic parameters. This thesis outlines the Robot Operating System (ROS) based Open Autonomous Air Vehicle (OpenUAV) simulations performed on the purposed three degree of freedom redundant aerial manipulation platform.

Contributors

Agent

Created

Date Created
2022