Matching Items (3)
Filtering by

Clear all filters

150112-Thumbnail Image.png
Description
Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For

Typically, the complete loss or severe impairment of a sense such as vision and/or hearing is compensated through sensory substitution, i.e., the use of an alternative sense for receiving the same information. For individuals who are blind or visually impaired, the alternative senses have predominantly been hearing and touch. For movies, visual content has been made accessible to visually impaired viewers through audio descriptions -- an additional narration that describes scenes, the characters involved and other pertinent details. However, as audio descriptions should not overlap with dialogue, sound effects and musical scores, there is limited time to convey information, often resulting in stunted and abridged descriptions that leave out many important visual cues and concepts. This work proposes a promising multimodal approach to sensory substitution for movies by providing complementary information through haptics, pertaining to the positions and movements of actors, in addition to a film's audio description and audio content. In a ten-minute presentation of five movie clips to ten individuals who were visually impaired or blind, the novel methodology was found to provide an almost two time increase in the perception of actors' movements in scenes. Moreover, participants appreciated and found useful the overall concept of providing a visual perspective to film through haptics.
ContributorsViswanathan, Lakshmie Narayan (Author) / Panchanathan, Sethuraman (Thesis advisor) / Hedgpeth, Terri (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2011
136785-Thumbnail Image.png
Description
This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of

This paper presents the design and evaluation of a haptic interface for augmenting human-human interpersonal interactions by delivering facial expressions of an interaction partner to an individual who is blind using a visual-to-tactile mapping of facial action units and emotions. Pancake shaftless vibration motors are mounted on the back of a chair to provide vibrotactile stimulation in the context of a dyadic (one-on-one) interaction across a table. This work explores the design of spatiotemporal vibration patterns that can be used to convey the basic building blocks of facial movements according to the Facial Action Unit Coding System. A behavioral study was conducted to explore the factors that influence the naturalness of conveying affect using vibrotactile cues.
ContributorsBala, Shantanu (Author) / Panchanathan, Sethuraman (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2014-05
158224-Thumbnail Image.png
Description
Societal infrastructure is built with vision at the forefront of daily life. For those with

severe visual impairments, this creates countless barriers to the participation and

enjoyment of life’s opportunities. Technological progress has been both a blessing and

a curse in this regard. Digital text together with screen readers and refreshable Braille

displays have

Societal infrastructure is built with vision at the forefront of daily life. For those with

severe visual impairments, this creates countless barriers to the participation and

enjoyment of life’s opportunities. Technological progress has been both a blessing and

a curse in this regard. Digital text together with screen readers and refreshable Braille

displays have made whole libraries readily accessible and rideshare tech has made

independent mobility more attainable. Simultaneously, screen-based interactions and

experiences have only grown in pervasiveness and importance, precluding many of

those with visual impairments.

Sensory Substituion, the process of substituting an unavailable modality with

another one, has shown promise as an alternative to accomodation, but in recent

years meaningful strides in Sensory Substitution for vision have declined in frequency.

Given recent advances in Computer Vision, this stagnation is especially disconcerting.

Designing Sensory Substitution Devices (SSDs) for vision for use in interactive settings

that leverage modern Computer Vision techniques presents a variety of challenges

including perceptual bandwidth, human-computer-interaction, and person-centered

machine learning considerations. To surmount these barriers an approach called Per-

sonal Foveated Haptic Gaze (PFHG), is introduced. PFHG consists of two primary

components: a human visual system inspired interaction paradigm that is intuitive

and flexible enough to generalize to a variety of applications called Foveated Haptic

Gaze (FHG), and a person-centered learning component to address the expressivity

limitations of most SSDs. This component is called One-Shot Object Detection by

Data Augmentation (1SODDA), a one-shot object detection approach that allows a

user to specify the objects they are interested in locating visually and with minimal

effort realizing an object detection model that does so effectively.

The Personal Foveated Haptic Gaze framework was realized in a virtual and real-

world application: playing a 3D, interactive, first person video game (DOOM) and

finding user-specified real-world objects. User study results found Foveated Haptic

Gaze to be an effective and intuitive interface for interacting with dynamic visual

world using solely haptics. Additionally, 1SODDA achieves competitive performance

among few-shot object detection methods and high-framerate many-shot object de-

tectors. The combination of which paves the way for modern Sensory Substitution

Devices for vision.
ContributorsFakhri, Bijan (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy L (Committee member) / Venkateswara, Hemanth (Committee member) / Amor, Heni (Committee member) / Arizona State University (Publisher)
Created2020