Matching Items (5)
Filtering by

Clear all filters

150499-Thumbnail Image.png
Description
The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain

The ability to plan, execute, and control goal oriented reaching and grasping movements is among the most essential functions of the brain. Yet, these movements are inherently variable; a result of the noise pervading the neural signals underlying sensorimotor processing. The specific influences and interactions of these noise processes remain unclear. Thus several studies have been performed to elucidate the role and influence of sensorimotor noise on movement variability. The first study focuses on sensory integration and movement planning across the reaching workspace. An experiment was designed to examine the relative contributions of vision and proprioception to movement planning by measuring the rotation of the initial movement direction induced by a perturbation of the visual feedback prior to movement onset. The results suggest that contribution of vision was relatively consistent across the evaluated workspace depths; however, the influence of vision differed between the vertical and later axes indicate that additional factors beyond vision and proprioception influence movement planning of 3-dimensional movements. If the first study investigated the role of noise in sensorimotor integration, the second and third studies investigate relative influence of sensorimotor noise on reaching performance. Specifically, they evaluate how the characteristics of neural processing that underlie movement planning and execution manifest in movement variability during natural reaching. Subjects performed reaching movements with and without visual feedback throughout the movement and the patterns of endpoint variability were compared across movement directions. The results of these studies suggest a primary role of visual feedback noise in shaping patterns of variability and in determining the relative influence of planning and execution related noise sources. The final work considers a computational approach to characterizing how sensorimotor processes interact to shape movement variability. A model of multi-modal feedback control was developed to simulate the interaction of planning and execution noise on reaching variability. The model predictions suggest that anisotropic properties of feedback noise significantly affect the relative influence of planning and execution noise on patterns of reaching variability.
ContributorsApker, Gregory Allen (Author) / Buneo, Christopher A (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2012
137282-Thumbnail Image.png
Description
A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a

A previous study demonstrated that learning to lift an object is context-based and that in the presence of both the memory and visual cues, the acquired sensorimotor memory to manipulate an object in one context interferes with the performance of the same task in presence of visual information about a different context (Fu et al, 2012).
The purpose of this study is to know whether the primary motor cortex (M1) plays a role in the sensorimotor memory. It was hypothesized that temporary disruption of the M1 following the learning to minimize a tilt using a ‘L’ shaped object would negatively affect the retention of sensorimotor memory and thus reduce interference between the memory acquired in one context and the visual cues to perform the same task in a different context.
Significant findings were shown in blocks 1, 2, and 4. In block 3, subjects displayed insignificant amount of learning. However, it cannot be concluded that there is full interference in block 3. Therefore, looked into 3 effects in statistical analysis: the main effects of the blocks, the main effects of the trials, and the effects of the blocks and trials combined. From the block effects, there is a p-value of 0.001, and from the trial effects, the p-value is less than 0.001. Both of these effects indicate that there is learning occurring. However, when looking at the blocks * trials effects, we see a p-value of 0.002 < 0.05 indicating significant interaction between sensorimotor memories. Based on the results that were found, there is a presence of interference in all the blocks but not enough to justify the use of TMS in order to reduce interference because there is a partial reduction of interference from the control experiment. It is evident that the time delay might be the issue between context switches. By reducing the time delay between block 2 and 3 from 10 minutes to 5 minutes, I will hope to see significant learning to occur from the first trial to the second trial.
ContributorsHasan, Salman Bashir (Author) / Santello, Marco (Thesis director) / Kleim, Jeffrey (Committee member) / Helms Tillery, Stephen (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor)
Created2014-05
134674-Thumbnail Image.png
Description
Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are not reliable measures for testing proprioception in impaired or unimpaired individuals. Recent advancements in technology and robotics have brought about

Background. Proprioception plays a large role in everyday functioning, involving both information of body position and movement (Johnson & Panayotis, 2010). Clinical assessments of proprioception are largely subjective and are not reliable measures for testing proprioception in impaired or unimpaired individuals. Recent advancements in technology and robotics have brought about new assessments that involve position matching and other paradigms. However, the results are confined to the horizontal plane and only look at a very small subset of human proprioceptive ability. Objective. The present study looks to overcome these limitations and examine differences in proprioceptive sensitivity across different directions in 3D space. Methods. Participants were recruited from Arizona State University to perform a "same-different" discrimination test using a robotic arm. Each participant was tested along two of the three directions, and within each direction, proprioception at four distances (1-4 cm) was tested. Performance was quantified using percent correct, d' analysis, and permutation testing on median and variance values. Results. Proprioceptive sensitivity was significantly greater in the up direction vs. down and back across all distances. The greatest difference in sensitivity occurred at 3 cm; permutation tests using median and variance values from percent correct and d' found statistical significance at this distance in the up vs. down and up vs. back comparisons. Conclusions. There is evidence that proprioceptive sensitivity is greater in an anti-gravity direction (up), in comparison to gravity-assisted or gravity-neutral (down and back) directions.
ContributorsPatel, Megha (Author) / Buneo, Christopher (Thesis director) / Helms Tillery, Stephen (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
137739-Thumbnail Image.png
Description
The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to

The role of retention and forgetting of context dependent sensorimotor memory of dexterous manipulation was explored. Human subjects manipulated a U-shaped object by switching the handle to be grasped (context) three times, and then came back two weeks later to lift the same object in the opposite context relative to that experience on the last block. On each context switch, an interference of the previous block of trials was found resulting in manipulation errors (object tilt). However, no significant re-learning was found two weeks later for the first block of trials (p = 0.826), indicating that the previously observed interference among contexts lasted a very short time. Interestingly, upon switching to the other context, sensorimotor memories again interfered with visually-based planning. This means that the memory of lifting in the first context somehow blocked the memory of lifting in the second context. In addition, the performance in the first trial two weeks later and the previous trial of the same context were not significantly different (p = 0.159). This means that subjects are able to retain long-term sensorimotor memories. Lastly, the last four trials in which subjects switched contexts were not significantly different from each other (p = 0.334). This means that the interference from sensorimotor memories of lifting in opposite contexts was weaker, thus eventually leading to the attainment of steady performance.
ContributorsGaw, Nathan Benjamin (Author) / Santello, Marco (Thesis director) / Helms Tillery, Stephen (Committee member) / Buneo, Christopher (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2013-05
147568-Thumbnail Image.png
Description

Lack of proprioceptive feedback is one cause for the high upper-limb prosthesis abandonment rate. The lack of environmental interaction normalcy from unreliable proprioception creates dissatisfaction among prosthesis users. The purpose of this experiment is to investigate the effects of square breathing on learning to navigate without reliable proprioception. Square breathing

Lack of proprioceptive feedback is one cause for the high upper-limb prosthesis abandonment rate. The lack of environmental interaction normalcy from unreliable proprioception creates dissatisfaction among prosthesis users. The purpose of this experiment is to investigate the effects of square breathing on learning to navigate without reliable proprioception. Square breathing is thought to influence the vagus nerve which is linked to increased learning rates. In this experiment, participants were instructed to reach toward targets in a semi-immersive virtual reality environment. Directional error, peak velocity, and peak acceleration of the reaching hand were investigated before and after participants underwent square breathing training. As the results of<br/>this experiment are inconclusive, further investigation needs to be done with larger sample sizes and examining unperturbed data to fully understand the effects of square breathing on learning new motor strategies in unreliable proprioceptive conditions.

ContributorsBonar, Sonja Marie (Author) / Helms Tillery, Stephen (Thesis director) / Tanner, Justin (Committee member) / VanGuilder, Paul (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05