Matching Items (501)
Filtering by

Clear all filters

152408-Thumbnail Image.png
Description
Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can

Quasars, the visible phenomena associated with the active accretion phase of super- massive black holes found in the centers of galaxies, represent one of the most energetic processes in the Universe. As matter falls into the central black hole, it is accelerated and collisionally heated, and the radiation emitted can outshine the combined light of all the stars in the host galaxy. Studies of quasar host galaxies at ultraviolet to near-infrared wavelengths are fundamentally limited by the precision with which the light from the central quasar accretion can be disentangled from the light of stars in the surrounding host galaxy. In this Dissertation, I discuss direct imaging of quasar host galaxies at redshifts z ≃ 2 and z ≃ 6 using new data obtained with the Hubble Space Telescope. I describe a new method for removing the point source flux using Markov Chain Monte Carlo parameter estimation and simultaneous modeling of the point source and host galaxy. I then discuss applications of this method to understanding the physical properties of high-redshift quasar host galaxies including their structures, luminosities, sizes, and colors, and inferred stellar population properties such as age, mass, and dust content.
ContributorsMechtley, Matt R (Author) / Windhorst, Rogier A (Thesis advisor) / Butler, Nathaniel (Committee member) / Jansen, Rolf A (Committee member) / Rhoads, James (Committee member) / Scowen, Paul (Committee member) / Arizona State University (Publisher)
Created2014
150630-Thumbnail Image.png
Description
Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the

Using high-resolution three-dimensional adaptive mesh refinement simulations I study the interaction between primordial minihalo, a clump of baryonic and dark matter with a virial temperature below the atomic cooling limit, and a galaxy outflow. In Chapter 2 I concentrate on the formation of molecular coolants and their effect on the evolution of the minihalo gas. Molecular coolants are important since they allow gas to cool below 10000 K. Therefore, I implement a primordial chemistry and cooling network that tracks the evolution and cooling from these species. I show that the shock from the galaxy outflow produces an abundance of coolants in the primordial gas which allows the gas to cool to below 10000 K. I also show that this interaction produces compact stellar clusters that are ejected from their parent dark matter halos. In Chapter 3 I look at the turbulent mixing of metals that occur between the minihalo and outflow. To do this, I develop a sub-grid model for turbulence that reproduces three primary fluid instabilities. I find that the metals from the outflow are well mixed throughout the minihalo gas. In addition, the metal abundance found roughly corresponds to the observed abundances in halo globular clusters. In Chapter 4, I conduct a suite of simulations that follow this interaction over a wide range of parameters. In almost all cases, the shocked minihalos form molecules and cool rapidly to become compact, chemically homogenous stellar clusters. Furthermore, I show that the unique properties of these clusters make them a prime observational target for study with the next generation of telescopes. Given the unique properties of these clusters there are reasons to suspect that their low-redshift counterparts are halo globular clusters. I outline this comparison in Chapter 5 and give my conclusions in Chapter 6. Finally, I summarize my current work in Chapter 7 and future extensions in Chapter 8. By the end, I hope to convince you that the interaction between a galaxy outflow and a primordial minihalo provides a formation pathway for present day halo globular clusters.
ContributorsGray, William James (Author) / Scannapieco, Evan (Thesis advisor) / Starrfield, Sumner (Committee member) / Timmes, Frank (Committee member) / Windhorst, Rogier (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
150890-Thumbnail Image.png
Description
Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this ga

Numerical simulations are very helpful in understanding the physics of the formation of structure and galaxies. However, it is sometimes difficult to interpret model data with respect to observations, partly due to the difficulties and background noise inherent to observation. The goal, here, is to attempt to bridge this gap between simulation and observation by rendering the model output in image format which is then processed by tools commonly used in observational astronomy. Images are synthesized in various filters by folding the output of cosmological simulations of gasdynamics with star-formation and dark matter with the Bruzual- Charlot stellar population synthesis models. A variation of the Virgo-Gadget numerical simulation code is used with the hybrid gas and stellar formation models of Springel and Hernquist (2003). Outputs taken at various redshifts are stacked to create a synthetic view of the simulated star clusters. Source Extractor (SExtractor) is used to find groupings of stellar populations which are considered as galaxies or galaxy building blocks and photometry used to estimate the rest frame luminosities and distribution functions. With further refinements, this is expected to provide support for missions such as JWST, as well as to probe what additional physics are needed to model the data. The results show good agreement in many respects with observed properties of the galaxy luminosity function (LF) over a wide range of high redshifts. In particular, the slope (alpha) when fitted to the standard Schechter function shows excellent agreement both in value and evolution with redshift, when compared with observation. Discrepancies of other properties with observation are seen to be a result of limitations of the simulation and additional feedback mechanisms which are needed.
ContributorsMorgan, Robert (Author) / Windhorst, Rogier A (Thesis advisor) / Scannapieco, Evan (Committee member) / Rhoads, James (Committee member) / Gardner, Carl (Committee member) / Belitsky, Andrei (Committee member) / Arizona State University (Publisher)
Created2012
150723-Thumbnail Image.png
Description
The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of the SL prior probability helps break the degeneracy of spectro-photometric redshifts (SPZs) between low redshift 4000 A break galaxies and

The first part of this dissertation presents the implementation of Bayesian statistics with galaxy surface luminosity (SL) prior probabilities to improve the ac- curacy of photometric redshifts. The addition of the SL prior probability helps break the degeneracy of spectro-photometric redshifts (SPZs) between low redshift 4000 A break galaxies and high redshift Lyman break galaxies which are mostly catas- trophic outliers. For a sample of 1138 galaxies with spectroscopic redshifts in the GOODS North and South fields at z < 1.6, the application of the surface luminosity prior reduces the fraction of galaxies with redshift deviation sigma(z) > 0.2 from 15.0% to 10.4%. The second part of this dissertation presents the study of the chemical evolution of the star-forming galaxies. The Hubble Space Telescope Probing Evolution and Reionization Spectroscopically (PEARS) grism Survey effectively selects emission line galaxies (ELGs) to mAB ~ 27. Follow-up Magellan LDSS3+IMACS spectroscopy of the HST/ACS PEARS ELGs confirms an accuracy of sigma_z = 0.006 for the HST/ACS PEARS grism redshifts. The luminosity-metallicity (L-Z) relation and the mass-metallicity (M-Z) relation of the PEARS ELGs at z ~ 0.6 are offset by ~ - 0.8 dex in metallicity for a given rest-frame B absolute magnitude and stellar mass relative to the local relations from SDSS galaxies. The offsets in both relations are ~ - 0.4 dex larger than that given by other samples at same redshifts, which are demonstrated to be due to the selection of different physical properties of the PEARS ELGs: low metallicities, very blue colors, small sizes, compact disturbed morphologies, high SSFR > 10^-9 yr^-1 , and high gas fraction. The downsizing effect, the tidal interacting induced inflow of metal-poor gas, and the SNe driven galactic winds outflows, may account for the significant offset of the PEARS galaxies in the L-Z and the M-Z relations relative to the local relations. The detection of the emission lines of ELGs down to m ~ 26 mag in the HST/ACS PEARS + HST/WCF3 ERS NIR composit grism spectra enables to extend the study of the evolution of the L-Z and M-Z relations to 0.6 < z < 2.4.
ContributorsXia, Lifang (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James (Committee member) / Scannapieco, Evan (Committee member) / Jansen, Rolf (Committee member) / Young, Patrick (Committee member) / Arizona State University (Publisher)
Created2012
157407-Thumbnail Image.png
Description
One of the most fundamental questions in astronomy is how the Universe evolved to become the highly structured system of stars and galaxies that we see today. The answer to this question can be largely uncovered in a relatively unexplored period in the history of the Universe known as the

One of the most fundamental questions in astronomy is how the Universe evolved to become the highly structured system of stars and galaxies that we see today. The answer to this question can be largely uncovered in a relatively unexplored period in the history of the Universe known as the Epoch of Reionization (EoR), where radiation from the first generation of stars and galaxies ionized the neutral hydrogen gas in the intergalactic medium. The reionization process created "bubbles" of ionized regions around radiating sources that perturbed the matter density distribution and influenced the subsequent formation of stars and galaxies. Exactly how and when reionization occurred are currently up for debate. However, by studying this transformative period we hope to unravel the underlying astrophysics that governs the formation and evolution of the first stars and galaxies.

The most promising method to study reionization is 21 cm tomography, which aims to map the 3D distribution of the neutral hydrogen gas using the 21 cm emission lines from the spin-flip transition of neutral hydrogen atoms. Several radio interferometers operating at frequencies below 200 MHz are conducting these experiments, but direct images of the observed fields are limited due to contamination from astrophysical foreground sources and other systematics, forcing current and upcoming analyses to be statistical.

In this dissertation, I studied one-point statistics of the 21 cm brightness temperature intensity fluctuations, focusing on how measurements from observations would be biased by different contaminations and instrumental systematics and how to mitigate them. I develop simulation tools to generate realistic mock 21 cm observations of the Hydrogen Epoch of Reionization Array (HERA), a new interferometer being constructed in the Karoo desert in South Africa, and perform sensitivity analysis of the telescope to one-point statistics using the mock observations. I show that HERA will be able to measure 21 cm one-point statistics with sufficient sensitivity if foreground contaminations can be sufficiently mitigated. In the presence of foreground, I develop a rolling foreground avoidance filter technique and demonstrate that it can be used to obtain noise-limited measurements with HERA. To assess these techniques on real data, I obtain measurements from the legacy data from the first season observation of the Murchison Widefield Array (MWA) and perform additional high-precision radio interferometric simulations for comparison. Through these works, I have developed new statistical tools that are complementary to the power spectrum method that is currently the central focus of the majority of analyses. In addition to confirming power spectrum detections, one-point statistics offer additional information on the distribution of the 21 cm fluctuations, which is directly linked to the astrophysics of structure formation.
ContributorsKittiwisit, Piyanat (Author) / Bowman, Judd D. (Thesis advisor) / Groppi, Christopher E. (Committee member) / Jacobs, Daniel C. (Committee member) / Scannapieco, Evan (Committee member) / Butler, Nathaniel R. (Committee member) / Arizona State University (Publisher)
Created2019
156741-Thumbnail Image.png
Description
Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few

Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]$\lambda$5007. They are the best low-redshift analogs of high-redshift (z$>$2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z $\sim$ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 -- 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]$\lambda$5007 $>$ 300\AA\ or the equivalent width of the line H$\beta$ $>$ 100\AA. The size of this new sample is ten times that of the original 80 star-forming green pea sample. With reliable T$_e$-based gas-phase metallicity measurements for the 835 green peas, a new empirical calibration of R23 (defined as ([OIII]$\lambda$$\lambda$4959,5007 + [OII]$\lambda$$\lambda$3726,3729)/H$\beta$) for strong line emitters is then derived. The double-value degeneracy of the metallicity is broken for galaxies with large ionization parameter (which manifests as log([OIII]$\lambda$$\lambda$4959,5007/[OII]$\lambda$$\lambda$3726,3729) $\geq$ 0.6). This calibration offers a good way to estimate metallicities for extreme emission-line galaxies and high-redshift LAEs. The third study presents stellar mass measurements and the stellar mass-metallicity relation of 828 green peas from the second study. The stellar mass covers 6 orders of magnitude in the range 10$^{5}$ -- 10$^{11}$ M$_{\odot}$, with a median value of 10$^{8.8}$ M$_{\odot}$. The stellar mass-metallicity relation of green peas is flatter and displays about 0.2 - 0.5 dex offset to lower metallicities in the range of stellar mass higher than 10$^{8}$ M$_{\odot}$ compared to the local SDSS star-forming galaxies. A significant dependence of the stellar mass-metallicity relation on star formation rate is not found in this work.
ContributorsJiang, Tianxing (Author) / Malhotra, Sangeeta (Thesis advisor) / Rhoads, James E (Committee member) / Scannapieco, Evan (Committee member) / Borthakur, Sanchayeeta (Committee member) / Jansen, Rolf A (Committee member) / Arizona State University (Publisher)
Created2018
Description
How do you convey what’s interesting and important to you as an artist in a digital world of constantly shifting attentions? For many young creatives, the answer is original characters, or OCs. An OC is a character that an artist creates for personal enjoyment, whether based on an already existing

How do you convey what’s interesting and important to you as an artist in a digital world of constantly shifting attentions? For many young creatives, the answer is original characters, or OCs. An OC is a character that an artist creates for personal enjoyment, whether based on an already existing story or world, or completely from their own imagination.
As creations made for purely personal interests, OCs are an excellent elevator pitch to talk one creative to another, opening up opportunities for connection in a world where communication is at our fingertips but personal connection is increasingly harder to make. OCs encourage meaningful interaction by offering themselves as muses, avatars, and story pieces, and so much more, where artists can have their characters interact with other creatives through many different avenues such as art-making, table top games, or word of mouth.

In this thesis, I explore the worlds and aesthetics of many creators and their original characters through qualitative research and collaborative art-making. I begin with a short survey of my creative peers, asking general questions about their characters and thoughts on OCs, then move to sketching characters from various creators. I focus my research to a group of seven core creators and their characters, whom I interview and work closely with in order to create a series of seven final paintings of their original characters.
ContributorsCote, Jacqueline (Author) / Button, Melissa M (Thesis director) / Dove-Viebahn, Aviva (Committee member) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131534-Thumbnail Image.png
Description
In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports

In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports promises of music industry sustainability based on increasing annual revenues in paid streaming services and artists’ high creative demand. The rate of new audio engineer entries in the sound recording subsection of the music industry is not viable to support streaming artists’ high demand to engineer new music recordings. Offering CTE programs in secondary education is rare for aspiring engineers with insufficient accessibility to pursue a post-secondary or vocational education because of financial and academic limitations. These aspiring engineers seek alternatives for receiving an informal education in audio engineering on the Internet using video sharing services like YouTube to search for tutorials and improve their engineering skills. The shortage of accessible educational materials on the Internet restricts engineers from advancing their own audio engineering education, reducing opportunities to enter a desperate job market in need of independent, home studio-based engineers. Content creators on YouTube take advantage of this situation and commercialize their own video tutorial series for free and selling paid subscriptions to exclusive content. This is misleading for newer engineers because these tutorials omit important understandings of fundamental engineering concepts. Instead, content creators teach inflexible engineering methodologies that are mostly beneficial to their own way of thinking. Content creators do not often assess the incompatibility of teaching their own methodologies to potential entrants in a profession that demands critical thinking skills requiring applied fundamental audio engineering concepts and techniques. This project analyzes potential solutions to resolve the deficiencies in online audio engineering education and experiments with structuring simple, deliverable, accessible educational content and materials to new entries in audio engineering. Designing clear, easy to follow material to these new entries in audio engineering is essential for developing a strong understanding for the application of fundamental concepts in future engineers’ careers. Approaches to creating and designing educational content requires translating complex engineering concepts through simplified mediums that reduce limitations in learning for future audio engineers.
ContributorsBurns, Triston Connor (Author) / Tobias, Evan (Thesis director) / Libman, Jeff (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133883-Thumbnail Image.png
Description
There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed,

There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed, including bisexual, asexual, and non-binary erasure. There are many people who claim that these identities do not exist, are labels used as a stepping stone on one's journey to discovering that they are homosexual, or are invented excuses for overtly promiscuous or prudish behavior. The existence of negative stereotypes, particularly those of non-binary individuals, is largely due to a lack of visibility and respectful representation within media and popular culture. However, there is still a dearth of non-binary content in popular literature outside of young adult fiction. Can You See Me? aims to fill the gap in bisexual, asexual, and non-binary representation in adult literature. Each of the four stories that make up this collection deals with an aspect of gender and/or sexuality that has been erased, ignored, or denied visibility in American popular culture. The first story, "We'll Grow Lemon Trees," examines bisexual erasure through the lens of sociolinguistics. A bisexual Romanian woman emigrates to Los Angeles in 1989 and must navigate a new culture, learn new languages, and try to move on from her past life under a dictatorship where speaking up could mean imprisonment or death. The second story "Up, Down, All Around," is about a young genderqueer child and their parents dealing with microaggressions, examining gender norms, and exploring personal identity through imaginary scenarios, each involving an encounter with an unknown entity and a colander. The third story, "Aces High," follows two asexual characters from the day they're born to when they are 28 years old, as they find themselves in pop culture. The two endure identity crises, gender discrimination, erasure, individual obsessions, and prejudice as they learn to accept themselves and embrace who they are. In the fourth and final story, "Mile Marker 72," a gay Mexican man must hide in plain sight as he deals with the death of his partner and coming out to his best friend, whose brother is his partner's murderer.
ContributorsOchser, Jordyn M. (Author) / Bell, Matt (Thesis director) / Free, Melissa (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133894-Thumbnail Image.png
Description
Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must

Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must navigate their new world. The original premiere run was March 27-28, 2018, original cast: Caitlin Andelora, Rikki Tremblay, and Michael Tristano Jr.
ContributorsToye, Abigail Elizabeth (Author) / Linde, Jennifer (Thesis director) / Abele, Kelsey (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05