Matching Items (524)
Filtering by

Clear all filters

152181-Thumbnail Image.png
Description
The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the

The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the spectral characteristics such as natural frequencies and amplitudes. Statistical pattern recognition tools such as Hilbert Huang, Fisher's Discriminant, and Neural Network were used to identify and classify the unknown samples whether they are defective or not. In this work, a Finite Element Analysis software packages (ANSYS 13.0 and NASTRAN NX8.0) was used to obtain estimates of resonance frequencies in `good' and `bad' samples. Furthermore, a system identification approach was used to generate Auto-Regressive-Moving Average with exogenous component, Box-Jenkins, and Output Error models from experimental data that can be used for classification
ContributorsJameel, Osama (Author) / Redkar, Sangram (Thesis advisor) / Arizona State University (Publisher)
Created2013
Description
Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is

Advances in software and applications continue to demand advances in memory. The ideal memory would be non-volatile and have maximal capacity, speed, retention time, endurance, and radiation hardness while also having minimal physical size, energy usage, and cost. The programmable metallization cell (PMC) is an emerging memory technology that is likely to surpass flash memory in all the listed ideal memory characteristics. A comprehensive physics-based model is needed to fully understand PMC operation and aid in design optimization. With the intent of advancing the PMC modeling effort, this thesis presents two simulation models for the PMC. The first model is a finite element model based on Silvaco Atlas finite element analysis software. Limitations of the software are identified that make this model inconsistent with the operating mechanism of the PMC. The second model is a physics-based numerical model developed for the PMC. This model is successful in matching data measured from a chalcogenide glass PMC designed and manufactured at ASU. Matched operating characteristics observable in the current and resistance vs. voltage data include the OFF/ON resistances and write/erase and electrodeposition voltage thresholds. Multilevel programming is also explained and demonstrated with the numerical model. The numerical model has already proven useful by revealing some information presented about the operation and characteristics of the PMC.
ContributorsOleksy, David Ryan (Author) / Barnaby, Hugh J (Thesis advisor) / Kozicki, Michael N (Committee member) / Edwards, Arthur H (Committee member) / Arizona State University (Publisher)
Created2013
152254-Thumbnail Image.png
Description
The friction condition is an important factor in controlling the compressing process in metalforming. The friction calibration maps (FCM) are widely used in estimating friction factors between the workpiece and die. However, in standard FEA, the friction condition is defined by friction coefficient factor (µ), while the FCM is used

The friction condition is an important factor in controlling the compressing process in metalforming. The friction calibration maps (FCM) are widely used in estimating friction factors between the workpiece and die. However, in standard FEA, the friction condition is defined by friction coefficient factor (µ), while the FCM is used to a constant shear friction factors (m) to describe the friction condition. The purpose of this research is to find a method to convert the m factor to u factor, so that FEA can be used to simulate ring tests with µ. The research is carried out with FEA and Design of Experiment (DOE). FEA is used to simulate the ring compression test. A 2D quarter model is adopted as geometry model. A bilinear material model is used in nonlinear FEA. After the model is established, validation tests are conducted via the influence of Poisson's ratio on the ring compression test. It is shown that the established FEA model is valid especially if the Poisson's ratio is close to 0.5 in the setting of FEA. Material folding phenomena is present in this model, and µ factors are applied at all surfaces of the ring respectively. It is also found that the reduction ratio of the ring and the slopes of the FCM can be used to describe the deformation of the ring specimen. With the baseline FEA model, some formulas between the deformation parameters, material mechanical properties and µ factors are generated through the statistical analysis to the simulating results of the ring compression test. A method to substitute the m factor with µ factors for particular material by selecting and applying the µ factor in time sequence is found based on these formulas. By converting the m factor into µ factor, the cold forging can be simulated.
ContributorsKexiang (Author) / Shah, Jami (Thesis advisor) / Davidson, Joseph (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2013
151345-Thumbnail Image.png
Description
Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle

Woven fabric composite materials are widely used in the construction of aircraft engine fan containment systems, mostly due to their high strength to weight ratios and ease of implementation. The development of a predictive model for fan blade containment would provide great benefit to engine manufactures in shortened development cycle time, less risk in certification and fewer dollars lost to redesign/recertification cycles. A mechanistic user-defined material model subroutine has been developed at Arizona State University (ASU) that captures the behavioral response of these fabrics, namely Kevlar® 49, under ballistic loading. Previously developed finite element models used to validate the consistency of this material model neglected the effects of the physical constraints imposed on the test setup during ballistic testing performed at NASA Glenn Research Center (NASA GRC). Part of this research was to explore the effects of these boundary conditions on the results of the numerical simulations. These effects were found to be negligible in most instances. Other material models for woven fabrics are available in the LS-DYNA finite element code. One of these models, MAT234: MAT_VISCOELASTIC_LOOSE_FABRIC (Ivanov & Tabiei, 2004) was studied and implemented in the finite element simulations of ballistic testing associated with the FAA ASU research. The results from these models are compared to results obtained from the ASU UMAT as part of this research. The results indicate an underestimation in the energy absorption characteristics of the Kevlar 49 fabric containment systems. More investigation needs to be performed in the implementation of MAT234 for Kevlar 49 fabric. Static penetrator testing of Kevlar® 49 fabric was performed at ASU in conjunction with this research. These experiments are designed to mimic the type of loading experienced during fan blade out events. The resulting experimental strains were measured using a non-contact optical strain measurement system (ARAMIS).
ContributorsFein, Jonathan (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
151367-Thumbnail Image.png
Description
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
ContributorsDeivanayagam, Arumugam (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
151523-Thumbnail Image.png
Description
Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and

Shock loading is a complex phenomenon that can lead to failure mechanisms such as strain localization, void nucleation and growth, and eventually spall fracture. Studying incipient stages of spall damage is of paramount importance to accurately determine initiation sites in the material microstructure where damage will nucleate and grow and to formulate continuum models that account for the variability of the damage process due to microstructural heterogeneity. The length scale of damage with respect to that of the surrounding microstructure has proven to be a key aspect in determining sites of failure initiation. Correlations have been found between the damage sites and the surrounding microstructure to determine the preferred sites of spall damage, since it tends to localize at and around the regions of intrinsic defects such as grain boundaries and triple points. However, considerable amount of work still has to be done in this regard to determine the physics driving the damage at these intrinsic weak sites in the microstructure. The main focus of this research work is to understand the physical mechanisms behind the damage localization at these preferred sites. A crystal plasticity constitutive model is implemented with different damage criteria to study the effects of stress concentration and strain localization at the grain boundaries. A cohesive zone modeling technique is used to include the intrinsic strength of the grain boundaries in the simulations. The constitutive model is verified using single elements tests, calibrated using single crystal impact experiments and validated using bicrystal and multicrystal impact experiments. The results indicate that strain localization is the predominant driving force for damage initiation and evolution. The microstructural effects on theses damage sites are studied to attribute the extent of damage to microstructural features such as grain orientation, misorientation, Taylor factor and the grain boundary planes. The finite element simulations show good correlation with the experimental results and can be used as the preliminary step in developing accurate probabilistic models for damage nucleation.
ContributorsKrishnan, Kapil (Author) / Peralta, Pedro (Thesis advisor) / Mignolet, Marc (Committee member) / Sieradzki, Karl (Committee member) / Jiang, Hanqing (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2013
151437-Thumbnail Image.png
Description
Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a

Dwindling energy resources and associated environmental costs have resulted in a serious need to design and construct energy efficient buildings. One of the strategies to develop energy efficient structural materials is through the incorporation of phase change materials (PCM) in the host matrix. This research work presents details of a finite element-based framework that is used to study the thermal performance of structural precast concrete wall elements with and without a layer of phase change material. The simulation platform developed can be implemented for a wide variety of input parameters. In this study, two different locations in the continental United States, representing different ambient temperature conditions (corresponding to hot, cold and typical days of the year) are studied. Two different types of concrete - normal weight and lightweight, different PCM types, gypsum wallboard's with varying PCM percentages and different PCM layer thicknesses are also considered with an aim of understanding the energy flow across the wall member. Effect of changing PCM location and prolonged thermal loading are also studied. The temperature of the inside face of the wall and energy flow through the inside face of the wall, which determines the indoor HVAC energy consumption are used as the defining parameters. An ad-hoc optimization scheme is also implemented where the PCM thickness is fixed but its location and properties are varied. Numerical results show that energy savings are possible with small changes in baseline values, facilitating appropriate material design for desired characteristics.
ContributorsHembade, Lavannya Babanrao (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
152580-Thumbnail Image.png
Description
Tall buildings are spreading across the globe at an ever-increasing rate (www.ctbuh.org). The global number of buildings 200m or more in height has risen from 286 to 602 in the last decade alone. The increasing complexity of building architecture poses unique challenges in the structural design of modern tall buildings.

Tall buildings are spreading across the globe at an ever-increasing rate (www.ctbuh.org). The global number of buildings 200m or more in height has risen from 286 to 602 in the last decade alone. The increasing complexity of building architecture poses unique challenges in the structural design of modern tall buildings. Hence, innovative structural systems need to be evaluated to create an economical design that satisfies multiple design criteria. Design using traditional trial-and-error approach can be extremely time-consuming and the resultant design uneconomical. Thus, there is a need for an efficient numerical optimization tool that can explore and generate several design alternatives in the preliminary design phase which can lead to a more desirable final design. In this study, we present the details of a tool that can be very useful in preliminary design optimization - finite element modeling, design optimization, translating design code requirements into components of the FE and design optimization models, and pre-and post-processing to verify the veracity of the model. Emphasis is placed on development and deployment of various FE models (static, modal and dynamic analyses; linear, beam and plate/shell finite elements), design optimization problem formulation (sizing, shape, topology and material selection optimization) and numerical optimization tools (gradient-based and evolutionary optimization methods) [Rajan, 2001]. The design optimization results of full scale three dimensional buildings subject to multiple design criteria including stress, serviceability and dynamic response are discussed.
ContributorsSirigiri, Mamatha (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2014
152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
152841-Thumbnail Image.png
Description
Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO"). A Rigid Origami, unlike other forms, is not intended to be folded into fancy shapes. On the contrary, an RO

Origami is an art transforming a flat sheet of paper into a sculpture. Among various types of origami, the focus is on a particular class called the `Rigid Origami' ("RO"). A Rigid Origami, unlike other forms, is not intended to be folded into fancy shapes. On the contrary, an RO has a simple and a geometrically well-defined crease pattern and does not have curved/smudged faces. The folds can be carried out by a continuous motion in which, at each step, each face of the origami is completely flat. As a result, these planar faces experience very minimal strain due to loading. This property allows it to be used to fold surfaces made of rigid materials. Tapping into the geometrical properties of RO will open a new field of research with great practical utility. Analyzing each new RO pattern will require generating numerous prototypes; this is practically impossible to do, as it consumes a lot of time and material. The advantages of Finite Element Analysis
umerical modeling become very clear in this scenario. A new design concept may be modeled to determine its real world behavior under various load environments and may, therefore, be refined prior to the creation of drawings, when changes are inexpensive. Since an RO undergoes a non-local deformation when subjected to a disturbance, the usage of conventional FEA will not produce accurate results. A non-local element model was developed which can be used in conjunction with the finite element package ABAQUS, via its user-defined element (UEL). This model was tested on two RO patterns, namely Miura-Ori and Ron Resch, by carrying out basic simulations. There are many other interesting origami patterns, exhibiting different meta-material properties, yet to be explored. This Finite Element Approach equips researchers with necessary tools to study those options in great detail.
ContributorsKrishnaraju, Deepakshyam (Author) / Jiang, Dr. Hanqing (Thesis advisor) / Yu, Dr. Honyu (Committee member) / Mignolet, Dr. Marc (Committee member) / Arizona State University (Publisher)
Created2014