Matching Items (534)
Filtering by

Clear all filters

152308-Thumbnail Image.png
Description
Despite the critical role that the vertebral column plays in postural and locomotor behaviors, the functional morphology of the cervical region (i.e., the bony neck) remains poorly understood, particularly in comparison to that of the thoracic and lumbar sections. This dissertation tests the hypothesis that morphological variation in cervical vertebrae

Despite the critical role that the vertebral column plays in postural and locomotor behaviors, the functional morphology of the cervical region (i.e., the bony neck) remains poorly understood, particularly in comparison to that of the thoracic and lumbar sections. This dissertation tests the hypothesis that morphological variation in cervical vertebrae reflects differences in positional behavior (i.e., suspensory vs. nonsuspensory and orthograde vs. pronograde locomotion and postures). Specifically, this project addresses two broad research questions: (1) how does the morphology of cervical vertebrae vary with positional behavior and cranial morphology among primates and (2) where does fossil hominoid morphology fall within the context of the extant primates. Three biomechanical models were developed for the primate cervical spine and their predictions were tested by conducting a comparative analysis using a taxonomically and behaviorally diverse sample of primates. The results of these analyses were used to evaluate fossil hominoid morphology. The two biomechanical models relating vertebral shape to positional behaviors are not supported. However, a number of features distinguish behavioral groups. For example, the angle of the transverse process in relation to the cranial surface of the vertebral body--a trait hypothesized to reflect the deep spinal muscles' ability to extend and stabilize the neck--tends to be greater in pronograde species; this difference is in the opposite of the direction predicted by the biomechanical models. Other traits distinguish behavioral groups (e.g., spinous process length and cross-sectional area), but only in certain parts of the cervical column. The correlation of several vertebral features, especially transverse process length and pedicle cross-sectional area, with anterior cranial length supports the predictions made by the third model that links cervical morphology with head stabilization (i.e., head balancing). Fossil hominoid cervical remains indicate that the morphological pattern that characterizes modern humans was not present in Homo erectus or earlier hominins. These hominins are generally similar to apes in having larger neural arch cross-sectional areas and longer spinous processes than modern humans, likely indicating the presence of comparatively large nuchal muscles. The functional significance of this morphology remains unclear.
ContributorsNalley, Thierra Kénnec (Author) / Kimbel, William H. (Thesis advisor) / Reed, Kaye (Committee member) / Shapiro, Liza (Committee member) / Arizona State University (Publisher)
Created2013
151837-Thumbnail Image.png
Description
Identifying the ecological role, or niche, that a species occupies within their larger community elucidates environmental adaptability and evolutionary success. This dissertation investigates the occupied niche of chimpanzees (Pan troglodytes schweinfurthii) living in an open, dry savanna-woodland environment by examining patterns of resource use and interspecific interactions. Data were collected

Identifying the ecological role, or niche, that a species occupies within their larger community elucidates environmental adaptability and evolutionary success. This dissertation investigates the occupied niche of chimpanzees (Pan troglodytes schweinfurthii) living in an open, dry savanna-woodland environment by examining patterns of resource use and interspecific interactions. Data were collected October 2010--November 2011 at Issa, in the Ugalla region of western Tanzania, which is one of the driest, most open, and seasonal habitats inhabited by chimpanzees. Unlike most primatological studies which employ methods that include focal follows, this study focused instead on observing 'resource patches' for chimpanzees. Patch focals allow for the observation of all animals within a study area; capture resources that are not used by the study species; and are particularly well suited for unhabituated communities. In order to better understand relationships between environment and behavior, data collected at Issa are compared with published data from other chimpanzee populations. Issa chimpanzees were expected to have broader resource use than forest chimpanzees, as well as increased competition with other fauna, due to fewer available resources. However, in contrast to the assumption of food scarcity in dry habitats, dietary resources were available throughout the year. Like other populations, the diet of Issa chimpanzees consisted of mostly fruit, but unlike at other sites, the majority of plants consumed were woodland species. Additionally, although chimpanzees and other fauna shared spatial and dietary resources, there was only nominal overlap. These results point to extremely low levels of indirect competition between chimpanzees and other fauna. Despite extensive study of forest chimpanzees, little is known about their role within their faunal community in open, dry habitats, nor about how greater seasonality affects resource use. This project addresses both of these important issues and fosters novel approaches in anthropological studies, especially in reference to chimpanzee ecology and evolution. Understanding current chimpanzee behavioral relationships with their environments shapes hypotheses about their pasts, and also informs predictions about behaviors of similar taxa in paleo-environments. Lastly, examining the ecological role of chimpanzees within their larger communities will influence the formation of, as well as evaluate, conservation strategies.
ContributorsRussak, Samantha M (Author) / Reed, Kaye E (Thesis advisor) / Nash, Leanne T. (Committee member) / Schwartz, Gary T (Committee member) / Arizona State University (Publisher)
Created2013
152808-Thumbnail Image.png
Description
The earliest Eocene marked the appearance of the first North American euprimates (adapids, omomyids). Despite the fact that leading hypotheses assert that traits involved in food acquisition underlie euprimate origination and early diversification, the precise role that dietary competition played in establishing euprimates as successful members of mammalian communities is

The earliest Eocene marked the appearance of the first North American euprimates (adapids, omomyids). Despite the fact that leading hypotheses assert that traits involved in food acquisition underlie euprimate origination and early diversification, the precise role that dietary competition played in establishing euprimates as successful members of mammalian communities is unclear. This is because the degree of niche overlap between euprimates and all likely mammalian dietary competitors ("the euprimate competitive guild") is unknown. This research determined which of three major competition hypotheses - non-competition, strong competition, and weak competition - characterized the late Paleocene-early Eocene euprimate competitive guild. Each of these hypotheses is defined by a unique temporal pattern of niche overlap between euprimates and their non-euprimate competitors, allowing an evaluation of the nature of dietary competitive interactions surrounding the earliest euprimates in North America. Dietary niches were reconstructed for taxa within the fossil euprimate competitive guild using molar morphological measures determined to discriminate dietary regimes in two extant mammalian guilds. The degree of dietary niche separation among taxa was then evaluated across a series of fossil samples from the Bighorn Basin, Wyoming just prior to, during, and after euprimate origination. Statistical overlap between each pair of euprimate and non-euprimate dietary niches was determined using modified multivariate pairwise comparisons using distances in a multidimensional principal component "niche" space. Results indicate that euprimate origination and diversification in North America was generally characterized by the absence of dietary competition. This lack of competition with non-euprimates is consistent with an increase in the abundance and diversity of euprimates during the early Eocene, signifying that the "success" of euprimates may not be the result of direct biotic interactions between euprimates and other mammals. An examination of the euprimate dietary niche itself determined that adapids and omomyids occupied distinct niches and did not engage in dietary competition during the early Eocene. Furthermore, changes in euprimate dietary niche size over time parallel major climatic shifts. Reconstructing how both biotic and abiotic mechanisms affected Eocene euprimates has the potential to enhance our understanding of these influences on modern primate communities.
ContributorsStroik, Laura (Author) / Schwart, Gary T (Thesis advisor) / Reed, Kaye E (Committee member) / Campisano, Christopher J (Committee member) / Gunnell, Gregg F. (Committee member) / Arizona State University (Publisher)
Created2014
152706-Thumbnail Image.png
Description
In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class

In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class enrollment, academic achievement, interest in a STEM degree program, motivation to pursue a STEM career, and socioscientific decision–making for a sample of students enrolled full–time at Arizona State University. Given a lack of a priori knowledge of these relationships, the Grounded Theory Method was used and was the foundation for a mixed–methods analysis involving qualitative and quantitative data from one–on–one interviews, focus groups, questionnaires, and an online survey. Theory development and hypothesis generation were based on data from 44 students. The survey instrument, developed to test the hypotheses, was completed by 486 undergraduates, age 18–22, who graduated from U.S. public high schools. The results showed that higher exposure to HEB was correlated with greater high school science class enrollment, particularly for advanced biological science classes, and that, for some students, HEB exposure may have influenced their enrollment, because the students found the content interesting and relevant. The results also suggested that students with higher K–12 HEB exposure felt more prepared for undergraduate science coursework. There was a positive correlation between HEB exposure and interest in a STEM degree and an indirect relationship between higher HEB exposure and motivation to pursue a STEM career. Regarding a number of socioscientific issues, including but not limited to climate change, homosexuality, and stem cell research, students' behaviors and decision–making more closely reflected a scientific viewpoint—or less–closely aligned to a religion–based perspective—when students had greater HEB exposure, but this was sometimes contingent on students' lifetime exposure to religious doctrine and acceptance of general evolution or human evolution. This study has implications for K–12 and higher education and justifies a paradigm shift in evolution education research, such that more emphasis is placed on students' interests, perceived preparation for continued learning, professional goals and potential contributions to society rather than just their knowledge and acceptance.
ContributorsSchrein, Caitlin M (Author) / Toon, Richard (Thesis advisor) / Johanson, Donald (Thesis advisor) / Hackett, Edward (Committee member) / Molina-Walters, Debra (Committee member) / Arizona State University (Publisher)
Created2014
152530-Thumbnail Image.png
Description
Arguments of human uniqueness emphasize our complex sociality, unusual cognitive capacities, and language skills, but the timing of the origin of these abilities and their evolutionary causes remain unsolved. Though not unique to primates, kin-biased sociality was key to the success of the primate order. In contrast to ancestral solitary

Arguments of human uniqueness emphasize our complex sociality, unusual cognitive capacities, and language skills, but the timing of the origin of these abilities and their evolutionary causes remain unsolved. Though not unique to primates, kin-biased sociality was key to the success of the primate order. In contrast to ancestral solitary mammals, the earliest primates are thought to have maintained dispersed (non-group living) social networks, communicating over distances via vocalizations and scent marks. If such ancestral primates recognized kin, those networks may have facilitated the evolution of kin-biased sociality in the primate order and created selection for increased cognitive and communicative abilities. I used the gray mouse lemur (Microcebus murinus) to model whether vocalizations could have facilitated matrilineal and patrilineal kin recognition in ancestral primates. Much like mouse lemurs today, ancestral primates are thought to have been small-bodied, nocturnal creatures that captured insects and foraged for fruit in the thin, terminal ends of tree branches. Thus, the mouse lemur is an excellent model species because its ecological niche is likely to be similar to that of ancestral primates 55-90 million years ago. I conducted playback experiments in Ankarafantsika National Park, Madagascar testing whether mouse lemur agonistic calls contain matrilineal kin signatures and whether the lemurs recognize matrilineal kin. In contrast to large-brained, socially complex monkeys with frequent coalitionary behavior, mouse lemurs did not react differently to the agonistic calls of matrilineal kin and nonkin, though moderate signatures were present in the calls. I tested for patrilineal signatures and patrilineal kin recognition via mating and alarm calls in a colony with known pedigree relationships. The results are the first to demonstrate that a nocturnal, solitary foraging mammal gives mating calls with patrilineal signatures and recognizes patrilineal kin. Interestingly, alarm calls did not have signatures and did not facilitate kin recognition, suggesting that selection for kin recognition is stronger in some call types than others. As this dissertation is the first investigation of vocal kin recognition in a dispersed-living, nocturnal strepsirrhine primate, it greatly advances our knowledge of the role of vocal communication in the evolution of primate social complexity.
ContributorsKessler, Sharon E (Author) / Nash, Leanne (Thesis advisor) / Reed, Kaye (Thesis advisor) / Radespiel, Ute (Committee member) / Zimmermann, Elke (Committee member) / Arizona State University (Publisher)
Created2014
149936-Thumbnail Image.png
Description
This study examined the ontogeny of body mass (i.e. "growth") of Otolemur garnettii and Galago senegalensis. Growth is a proximate causal mechanism for adult size variation and growth patterns themselves can be the target of selection with adult size being the end result. Therefore, growth patterns of species

This study examined the ontogeny of body mass (i.e. "growth") of Otolemur garnettii and Galago senegalensis. Growth is a proximate causal mechanism for adult size variation and growth patterns themselves can be the target of selection with adult size being the end result. Therefore, growth patterns of species can be the result of adaptation to species-specific social system, ecology, and life-history. The goals of this study were to: (1) Assess whether interspecific body mass variation was due to differences in growth rate, growth duration, a combination of the two, or neither; (2) test the hypothesis that sexual size dimorphism is attained by differences in relative growth rate as predicted by sexual selection theory; and (3) test the hypothesis that frugivorous O. garnettii grow at a relatively lower rate than gummivorous Go. senegalensis as predicted by an ecological risk aversion hypothesis. Growth rates and durations of Otolemur garnettii and Galago senegalensis males and females were compared both interspecifically and intraspecifically. The hypotheses regarding the ontogeny of sexual size dimorphism and the risk aversion hypothesis were not supported. O. garnettii males and females grow at an absolutely higher rate and for a longer duration compared to Go. senegalensis males and females respectively. O. garnettii females grow at a relatively higher rate compared to Go. senegalensis females as well. This may relate to weaning habits. O. garnettii infants are weaned during the dry season when feeding competition would be presumably high making large mass at weaning advantageous. While the growth of females might be strongly influenced by natural selection and competition for resources following weaning, the growth of males may be more strongly influenced by sexual selection relating to contest competition for females. Sexual size dimorphism results from differences in growth duration in O. garnettii and from differences in both growth duration and growth rate in Go. senegalensis. The results of this study highlight the need for more data on the growth patterns, mating and social systems, feeding competition, and life history schedules for these and other galagids. Study of how and why growth patterns have diverged through evolution is important in discerning the evolutionary history of each species.
ContributorsSchaefer, Melissa K (Author) / Nash, Leanne T. (Thesis advisor) / Marzke, Mary W. (Committee member) / Schwartz, Gary T. (Committee member) / Arizona State University (Publisher)
Created2011
150702-Thumbnail Image.png
Description
Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its

Extremely thick cranial vaults have been noted as a diagnostic characteristic of Homo erectus since the first fossil of the species was identified, but potential mechanisms underlying this seemingly unique trait have not been rigorously investigated. Cranial vault thickness (CVT) is not a monolithic trait, and the responsiveness of its layers to environmental stimuli is unknown. Identifying factors that affect CVT would be exceedingly valuable in teasing apart potential contributors to thick vaults in the Pleistocene. Four hypotheses were tested using CT scans of skulls of more than 1100 human and non-human primates. Data on total frontal, parietal, and occipital bone thickness and bone composition were collected to test the hypotheses: H1. CVT is an allometric consequence of brain or body size. H2. Thick cranial vaults are a response to long, low cranial vault shape. H3. High masticatory stress causes localized thickening of cranial vaults. H4. Activity-mediated systemic hormone levels affect CVT. Traditional comparative methods were used to identify features that covary with CVT across primates to establish behavior patterns that might correlate with thick cranial vaults. Secondly, novel experimental manipulation of a model organism, Mus musculus, was used to evaluate the relative plasticity of CVT. Finally, measures of CVT in fossil hominins were described and discussed in light of the extant comparative and experimental results. This dissertation reveals previously unknown variation among extant primates and humans and illustrates that Homo erectus is not entirely unique among primates in its CVT. The research suggests that it is very difficult to make a mouse grow a thick head, although it can be genetically programmed to have one. The project also identifies a possible hominin synapomorphy: high diploë ratios compared to non-human primates. It also found that extant humans differ from non-human primates in overall pattern of which cranial vault bones are thickest. What this project was unable to do was definitively provide an explanation for why and how Homo erectus grew thick skulls. Caution is required when using CVT as a diagnostic trait for Homo erectus, as the results presented here underscore the complexity inherent in its evolution and development.
ContributorsCopes, Lynn (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark A. (Committee member) / Ravosa, Matthew J. (Committee member) / Arizona State University (Publisher)
Created2012
151077-Thumbnail Image.png
Description
Modern primate diet is well-studied because of its considerable influence on multiple aspects of morphology, including the shape of the facial skeleton and teeth. It is well-established that differences in craniofacial form influence feeding abilities by altering the nature of bite force production. Tooth morphology, likewise, has been shown to

Modern primate diet is well-studied because of its considerable influence on multiple aspects of morphology, including the shape of the facial skeleton and teeth. It is well-established that differences in craniofacial form influence feeding abilities by altering the nature of bite force production. Tooth morphology, likewise, has been shown to vary with diet across primates, particularly in the details of occlusal form. It has also been suggested that tooth form (e.g., tooth root size and shape and crown size) reflects, in part, the demands of resisting the stresses generated during feeding. However, while they are central to our efforts to infer diet in past species, the relationships between bite force production, craniofacial morphology and tooth form are not well-established. The current study is separated into two parts. In Part I, the hypothesis that crown size and root surface area are adapted to resist masticatory stress is evaluated by testing whether these features show correlated variation along the tooth row in a taxonomically diverse sample of primates. To further explore the adaptive nature of this correlation, pair-wise comparisons between primates with mechanically resistant diets and closely-related species consuming less resistant foods are performed. If crown size and root surface area covary along the tooth row, past research suggests they may be related to bite force. To test this hypothesis, Part II examines the variation of these dental characteristics in comparison to theoretically-derived bite force patterns along the tooth row. Results suggest that patterns of maximum bite force magnitude along the tooth row are variable both within and between species, underscoring the importance of individual craniofacial variation on masticatory force production. Furthermore, it is suggested that some adaptations traditionally associated with high bite force production (i.e., facial orthognathy) may increase anterior biting force at the expense of posterior biting force. Taken together, results from the current study reveal that both tooth root and crown size vary in conjunction with the mechanical properties of diet and with bite force patterns along the tooth row in anthropoids.
ContributorsLucas, Lynn (Author) / Spencer, Mark (Thesis advisor) / Schwartz, Gary (Committee member) / Kimbel, William (Committee member) / Arizona State University (Publisher)
Created2012
150651-Thumbnail Image.png
Description
Unanswered questions about the evolution of human gender abound and are salient across the anthropological disciplines and beyond. Did adult sex-typed behavioral tendencies actually evolve? If so, when? For what purpose? The best way to gain insight into the evolution of human gender is to understand the evolution and development

Unanswered questions about the evolution of human gender abound and are salient across the anthropological disciplines and beyond. Did adult sex-typed behavioral tendencies actually evolve? If so, when? For what purpose? The best way to gain insight into the evolution of human gender is to understand the evolution and development of sex-typed behavior in comparative primate taxa. Captive research indicates that there are many proximate factors likely to shape the development of sex-typed behavior in non-human primates—prenatal and postnatal endocrinological experience, social experience, ecological factors, and their interactions. However, it is largely unknown how sex-typed behavior proceeds and is shaped by those factors in evolutionarily salient environments. This study investigated one—whether extrinsic sexually differentiated social interactions are likely influential in the development of adult sex-typed behavior in wild-living Lemur catta. Little is known about sex-typed development in this species or in strepsirrhines in general. This research therefore addresses an important phylogenetic gap in our understanding of primate sex-typed development. Behavioral observations were carried out on mixed cross-sectional sample of adult females (n=10), adult males (n=8), yearling females (n=4), yearling males (n=4), and newborn females (n=16) and males (n=14) at Beza Mahafaly Special Reserve in southwest Madagascar from September 2008 to August 2009. Twenty-three sex-typed behaviors were identified in adults using linear mixed effects models and models of group response profiles through time. Of those, only eight had a pre-pubertal developmental component. Infants did not exhibit any sex differences in behavior, but juveniles (prepubertal, weaned individuals) resembled adults in their (relatively few) patterns of expression of sex-typed behavior. Most adult sex-typed behaviors in this species apparently develop at or after puberty and may be under gonadal hormone control. Those that develop before puberty do not likely depend on extrinsic sexually differentiation social interactions for their development, because there is no clear evidence that infants and juvenile male and females are not treated differently by others according to sex. If sexually differentiated social interactions are important for sex-typed behavioral development in subadult ,italic>Lemur catta, they are likely intrinsically (rather than extrinsically) driven.
ContributorsMeredith, Stephanie Lynn (Author) / Nash, Leanne T. (Thesis advisor) / Reed, Kaye E (Committee member) / Schwartz, Gary T (Committee member) / Arizona State University (Publisher)
Created2012
150416-Thumbnail Image.png
Description
The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to

The pattern and strength of genetic covariation is shaped by selection so that it is strong among functionally related characters and weak among functionally unrelated characters. Genetic covariation is expressed as phenotypic covariation within species and acts as a constraint on evolution by limiting the ability of linked characters to evolve independently of one another. Such linked characters are "constrained" and are expected to express covariation both within and among species. In this study, the pattern and magnitude of covariation among aspects of dental size and shape are investigated in anthropoid primates. Pleiotropy has been hypothesized to play a significant role in derivation of derived hominin morphologies. This study tests a series of hypotheses; including 1) that negative within- and among-species covariation exists between the anterior (incisors and canines) and postcanine teeth, 2) that covariation is strong and positive between the canines and incisors, 3) that there is a dimorphic pattern of within-species covariation and coevolution for characters of the canine honing complex, 4) that patterns of covariation are stable among anthropoids, and 5) that genetic constraints have been a strong bias on the diversification of anthropoid dental morphology. The study finds that patterns of variance-covariance are conserved among species. Despite these shared patterns of variance-covariance, dental diversification has frequently occurred along dimensions not aligned with the vector of genetic constraint. As regards the canine honing complex, there is no evidence for a difference in the pleiotropic organization or the coevolution of characters of the complex in males and females, which undermines arguments that the complex is selectively important only in males. Finally, there is no evidence for strong or negative pleiotropy between any dental characters, which falsifies hypotheses that predict such relationships between incisors and postcanine teeth or between the canines and the postcanine teeth.
ContributorsDelezene, Lucas (Author) / Kimbel, William H. (Thesis advisor) / Schwartz, Gary T (Committee member) / Spencer, Mark (Committee member) / Verrelli, Brian C (Committee member) / Arizona State University (Publisher)
Created2011