Matching Items (5)
Filtering by

Clear all filters

136450-Thumbnail Image.png
Description
"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie

"The Legal Adventures of Frankie and Rosie" is a creative project that explores the nontraditional format of comics to express creative nonfiction. The project is a set of 30 independent comics that focuses on two primary college-going students who are based off of the authors. The characters, Frankie and Rosie narrate their stories through dialogue. The authors use this narrative model to archive their college experience at ASU. Representing creative nonfiction through comics yields an amalgamated format that can be challenging for both the writers to produce as well as for the readers to consume. Ultimately, the project serves as an attempt to test whether or not the comic medium can stand by itself as an appropriate format to express creative nonfictional narratives without becoming a diluted combination of its purer predecessors.
Created2015-05
133873-Thumbnail Image.png
Description
This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water

This documentary shows how what we eat affects our planet. Meat and dairy consumption is the number one pollutant to the environment and yet it is often not discussed among environmentalists. There is so much devastation taking place on our planet due the animal agriculture industry: air pollution, and water contamination, destruction of the the Amazon rainforests. Natural resources, such as water - it takes one thousand gallons of water to produce one gallon of milk - are being over consumed. Land is being cleared of trees at a massive scale in the Amazon to make more room for land to raise livestock and grow its feed. Following the stories and experiences of several ASU students and other community members, the documentary highlights this connection between food and its effects on the environment and what people can do to make a difference.
ContributorsKoka, Vaishnavi (Author) / Barca, Lisa (Thesis director) / Meloy, Elizabeth (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions.
ContributorsLeBeau, Edward Sanroma (Author) / Goryll, Michael (Thesis director) / Bowden, Stuart (Committee member) / Dauksher, Bill (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05