Matching Items (505)
Filtering by

Clear all filters

151620-Thumbnail Image.png
Description
DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles

DNA has recently emerged as an extremely promising material to organize molecules on nanoscale. The reliability of base recognition, self-assembling behavior, and attractive structural properties of DNA are of unparalleled value in systems of this size. DNA scaffolds have already been used to organize a variety of molecules including nanoparticles and proteins. New protein-DNA bio-conjugation chemistries make it possible to precisely position proteins and other biomolecules on underlying DNA scaffolds, generating multi-biomolecule pathways with the ability to modulate inter-molecular interactions and the local environment. This dissertation focuses on studying the application of using DNA nanostructure to direct the self-assembly of other biomolecular networks to translate biochemical pathways to non-cellular environments. Presented here are a series of studies toward this application. First, a novel strategy utilized DNA origami as a scaffold to arrange spherical virus capsids into one-dimensional arrays with precise nanoscale positioning. This hierarchical self-assembly allows us to position the virus particles with unprecedented control and allows the future construction of integrated multi-component systems from biological scaffolds using the power of rationally engineered DNA nanostructures. Next, discrete glucose oxidase (GOx)/ horseradish peroxidase (HRP) enzyme pairs were organized on DNA origami tiles with controlled interenzyme spacing and position. This study revealed two different distance-dependent kinetic processes associated with the assembled enzyme pairs. Finally, a tweezer-like DNA nanodevice was designed and constructed to actuate the activity of an enzyme/cofactor pair. Using this approach, several cycles of externally controlled enzyme inhibition and activation were successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.
ContributorsLiu, Minghui (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Chen, Julian (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2013
152677-Thumbnail Image.png
Description
Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials,

Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, ∆EDA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt-16. Furthermore, the development of a series of tetradentate Pt complexes yielded highly efficient and stable single doped white devices due to their halogen free tetradentate design. In addition to these benchmark achievements, the systematic molecular modification of both emissive and absorbing materials provides valuable structure-property relationship information that should help guide further developments in the field.
ContributorsFleetham, Tyler Blain (Author) / Li, Jian (Thesis advisor) / Alford, Terry (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2014
152848-Thumbnail Image.png
Description
Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate

Single molecule identification is one essential application area of nanotechnology. The application areas including DNA sequencing, peptide sequencing, early disease detection and other industrial applications such as quantitative and quantitative analysis of impurities, etc. The recognition tunneling technique we have developed shows that after functionalization of the probe and substrate of a conventional Scanning Tunneling Microscope with recognition molecules ("tethered molecule-pair" configuration), analyte molecules trapped in the gap that is formed by probe and substrate will bond with the reagent molecules. The stochastic bond formation/breakage fluctuations give insight into the nature of the intermolecular bonding at a single molecule-pair level. The distinct time domain and frequency domain features of tunneling signals were extracted from raw signals of analytes such as amino acids and their enantiomers. The Support Vector Machine (a machine-learning method) was used to do classification and predication based on the signal features generated by analytes, giving over 90% accuracy of separation of up to seven analytes. This opens up a new interface between chemistry and electronics with immediate implications for rapid Peptide/DNA sequencing and molecule identification at single molecule level.
ContributorsZhao, Yanan, 1986- (Author) / Lindsay, Stuart (Thesis advisor) / Nemanich, Robert (Committee member) / Qing, Quan (Committee member) / Ros, Robert (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2014
153338-Thumbnail Image.png
Description
Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds

Small molecules have proven to be very important tools for exploration of biological systems including diagnosis and treatment of lethal diseases like cancer. Fluorescent probes have been extensively used to further amplify the utilization of small molecules. The manipulation of naturally occurring biological targets with the help of synthetic compounds is the focus of the work described in this thesis.

Bleomycins (BLMs) are a class of water soluble, glycopeptide-derived antitumor antibiotics consisting of a structurally complicated unnatural hexapeptide and a disaccharide, clinically used as an anticancer chemotherapeutic agent at an exceptionally low therapeutic dose. The efficiency of BLM is likely achieved both by selective localization within tumor cells and selective binding to DNA followed by efficient double-strand cleavage. The disaccharide moiety is responsible for the tumor cell targeting properties of BLM. A recent study showed that both BLM and its disaccharide, conjugated to the cyanine dye Cy5**, bound selectively to cancer cells. Thus, the disaccharide moiety alone recapitulates the tumor cell targeting properties of BLM. Work presented here describes the synthesis of the fluorescent carbohydrate conjugates. A number of dye-labeled modified disaccharides and monosaccharides were synthesized to study the nature of the participation of the carbamoyl moiety in the mechanism of tumor cell recognition and uptake by BLM saccharides. It was demonstrated that the carbamoylmannose moiety of BLM is the smallest structural entity capable for the cellular targeting and internalization, and the carbamoyl functionality is indispensible for tumor cell targeting. It was also confirmed that BLM is a modular molecule, composed of a tumor cell targeting moiety (the saccharide) attached to a cytotoxic DNA cleaving domain (the BLM aglycone). These finding encouraged us to further synthesize carbohydrate probes for PET imaging and to conjugate the saccharide moiety with cytotoxins for targeted delivery to tumor cells.

The misacylated suppressor tRNA technique has enabled the site-specific incorporation of noncanonical amino acids into proteins. The focus of the present work was the synthesis of unnatural lysine analogues with nucleophilic properties for incorporation at position 72 of the lyase domain of human DNA polymerase beta, a multifunctional enzyme with dRP lyase and polymerase activity.
ContributorsBhattacharya, Chandrabali (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian R (Committee member) / Arizona State University (Publisher)
Created2014
Description
How do you convey what’s interesting and important to you as an artist in a digital world of constantly shifting attentions? For many young creatives, the answer is original characters, or OCs. An OC is a character that an artist creates for personal enjoyment, whether based on an already existing

How do you convey what’s interesting and important to you as an artist in a digital world of constantly shifting attentions? For many young creatives, the answer is original characters, or OCs. An OC is a character that an artist creates for personal enjoyment, whether based on an already existing story or world, or completely from their own imagination.
As creations made for purely personal interests, OCs are an excellent elevator pitch to talk one creative to another, opening up opportunities for connection in a world where communication is at our fingertips but personal connection is increasingly harder to make. OCs encourage meaningful interaction by offering themselves as muses, avatars, and story pieces, and so much more, where artists can have their characters interact with other creatives through many different avenues such as art-making, table top games, or word of mouth.

In this thesis, I explore the worlds and aesthetics of many creators and their original characters through qualitative research and collaborative art-making. I begin with a short survey of my creative peers, asking general questions about their characters and thoughts on OCs, then move to sketching characters from various creators. I focus my research to a group of seven core creators and their characters, whom I interview and work closely with in order to create a series of seven final paintings of their original characters.
ContributorsCote, Jacqueline (Author) / Button, Melissa M (Thesis director) / Dove-Viebahn, Aviva (Committee member) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131534-Thumbnail Image.png
Description
In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports

In the past ten years, the United States’ sound recording industries have experienced significant decreases in employment opportunities for aspiring audio engineers from economic imbalances in the music industry’s digital streaming era and reductions in government funding for career and technical education (CTE). The Recording Industry Association of America reports promises of music industry sustainability based on increasing annual revenues in paid streaming services and artists’ high creative demand. The rate of new audio engineer entries in the sound recording subsection of the music industry is not viable to support streaming artists’ high demand to engineer new music recordings. Offering CTE programs in secondary education is rare for aspiring engineers with insufficient accessibility to pursue a post-secondary or vocational education because of financial and academic limitations. These aspiring engineers seek alternatives for receiving an informal education in audio engineering on the Internet using video sharing services like YouTube to search for tutorials and improve their engineering skills. The shortage of accessible educational materials on the Internet restricts engineers from advancing their own audio engineering education, reducing opportunities to enter a desperate job market in need of independent, home studio-based engineers. Content creators on YouTube take advantage of this situation and commercialize their own video tutorial series for free and selling paid subscriptions to exclusive content. This is misleading for newer engineers because these tutorials omit important understandings of fundamental engineering concepts. Instead, content creators teach inflexible engineering methodologies that are mostly beneficial to their own way of thinking. Content creators do not often assess the incompatibility of teaching their own methodologies to potential entrants in a profession that demands critical thinking skills requiring applied fundamental audio engineering concepts and techniques. This project analyzes potential solutions to resolve the deficiencies in online audio engineering education and experiments with structuring simple, deliverable, accessible educational content and materials to new entries in audio engineering. Designing clear, easy to follow material to these new entries in audio engineering is essential for developing a strong understanding for the application of fundamental concepts in future engineers’ careers. Approaches to creating and designing educational content requires translating complex engineering concepts through simplified mediums that reduce limitations in learning for future audio engineers.
ContributorsBurns, Triston Connor (Author) / Tobias, Evan (Thesis director) / Libman, Jeff (Committee member) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
133883-Thumbnail Image.png
Description
There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed,

There has been a recent push for queer fiction, especially in the young adult genre, whose focus is gay and lesbian relationships. This growth is much needed in terms of visibility and the furthering of acceptance, but there are still subjects within the LGBTQ+ community that need to be addressed, including bisexual, asexual, and non-binary erasure. There are many people who claim that these identities do not exist, are labels used as a stepping stone on one's journey to discovering that they are homosexual, or are invented excuses for overtly promiscuous or prudish behavior. The existence of negative stereotypes, particularly those of non-binary individuals, is largely due to a lack of visibility and respectful representation within media and popular culture. However, there is still a dearth of non-binary content in popular literature outside of young adult fiction. Can You See Me? aims to fill the gap in bisexual, asexual, and non-binary representation in adult literature. Each of the four stories that make up this collection deals with an aspect of gender and/or sexuality that has been erased, ignored, or denied visibility in American popular culture. The first story, "We'll Grow Lemon Trees," examines bisexual erasure through the lens of sociolinguistics. A bisexual Romanian woman emigrates to Los Angeles in 1989 and must navigate a new culture, learn new languages, and try to move on from her past life under a dictatorship where speaking up could mean imprisonment or death. The second story "Up, Down, All Around," is about a young genderqueer child and their parents dealing with microaggressions, examining gender norms, and exploring personal identity through imaginary scenarios, each involving an encounter with an unknown entity and a colander. The third story, "Aces High," follows two asexual characters from the day they're born to when they are 28 years old, as they find themselves in pop culture. The two endure identity crises, gender discrimination, erasure, individual obsessions, and prejudice as they learn to accept themselves and embrace who they are. In the fourth and final story, "Mile Marker 72," a gay Mexican man must hide in plain sight as he deals with the death of his partner and coming out to his best friend, whose brother is his partner's murderer.
ContributorsOchser, Jordyn M. (Author) / Bell, Matt (Thesis director) / Free, Melissa (Committee member) / Department of English (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133894-Thumbnail Image.png
Description
Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must

Pandora is a play exploring our relationship with gendered technology through the lens of artificial intelligence. Can women be subjective under patriarchy? Do robots who look like women have subjectivity? Hoping to create a better version of ourselves, The Engineer must navigate the loss of her creation, and Pandora must navigate their new world. The original premiere run was March 27-28, 2018, original cast: Caitlin Andelora, Rikki Tremblay, and Michael Tristano Jr.
ContributorsToye, Abigail Elizabeth (Author) / Linde, Jennifer (Thesis director) / Abele, Kelsey (Committee member) / Department of Information Systems (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133896-Thumbnail Image.png
Description
After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been

After freelancing on my own for the past year and a half, I have realized that one of the biggest obstacles to college entrepreneurs is a fear or apprehension to sales. As a computer science major trying to sell my services, I discovered very quickly that I had not been prepared for the difficulty of learning sales. Sales get a bad rap and very often is the last thing that young entrepreneurs want to try, but the reality is that sales is oxygen to a company and a required skill for an entrepreneur. Due to this, I compiled all of my knowledge into an e-book for young entrepreneurs starting out to learn how to open up a conversation with a prospect all the way to closing them on the phone. Instead of starting from scratch like I did, college entrepreneurs can learn the bare basics of selling their own services, even if they are terrified of sales and what it entails. In this e-book, there are tips that I have learned to deal with my anxiety about sales such as taking the pressure off of yourself and prioritizing listening more than pitching. Instead of trying to teach sales expecting people to be natural sales people, this e-book takes the approach of helping entrepreneurs that are terrified of sales and show them how they can cope with this fear and still close a client. In the future, I hope young entrepreneurs will have access to more resources that handle this fear and make it much easier for them to learn it by themselves. This e-book is the first step.
ContributorsMead, Kevin Tyler (Author) / Sebold, Brent (Thesis director) / Kruse, Gabriel (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133902-Thumbnail Image.png
Description
South Korea possesses the only culture to successfully create a transnationality and hybridity formula that is not replicable. So why Korea and why now? The goal of this thesis creative project is to demonstrate the marketing and communications strategies used in the arts and culture industry to drive global awareness

South Korea possesses the only culture to successfully create a transnationality and hybridity formula that is not replicable. So why Korea and why now? The goal of this thesis creative project is to demonstrate the marketing and communications strategies used in the arts and culture industry to drive global awareness and interest in K-Pop. In order to achieve that goal, I created HellotoHallyu.com, a website designed for an audience of Millennials and Generation Z English speakers to increase their awareness of the growth and impact of the Korean Wave in a fun and engaging way. So those who may hear a song by K-Pop idol group BTS on a music awards show in the U.S. can get themselves up-to-speed before diving into the fast-paced world of K-culture gossip sites and forums. Hello to Hallyu delivers consumer-friendly, educational content easily understood by English speakers with no prior knowledge of Korean culture, while still piquing the interest of K-pop connoisseurs. It provides the background necessary for even the most dedicated fans to glean new knowledge of Korea's cultural industry and a new perspective on the content they consume. Hello to Hallyu is based on a combination of secondary and primary research conducted over four semesters beginning Spring 2017 and continuing through Spring 2018. This project is set up as an ever-expanding resource freely available to anyone with internet access. The research required to maintain the site will continue with the Wave. However, the content currently on the site is evergreen, a documentation of the history of the Wave as explained in peer-reviewed articles and by Dr. Ingyu Oh as well as a documentation of my personal experience with Hallyu while in Korea and as a Westerner living in the U.S. The site's goal is to demonstrate the marketing and communications strategies used in the industry to drive global awareness and interest. Through this means, Hello to Hallyu aims to provide fully developed multimedia content intended to increase English speakers' awareness of the growth and impact of the Korean Wave as shown through site visits, content views, and audience engagement.
ContributorsTravis, Lisa Anne (Author) / Hass, Mark (Thesis director) / Shewell, Justin (Committee member) / Walter Cronkite School of Journalism and Mass Communication (Contributor) / School of Film, Dance and Theatre (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05