Matching Items (6)
Filtering by

Clear all filters

136704-Thumbnail Image.png
Description
The Roller Derby Club at Arizona State University became a student organization in the fall of 2013. They became a practicing team known as the Derby Devils in the spring of 2014. This project documents the creation and development a collegiate roller derby team as they go from a student

The Roller Derby Club at Arizona State University became a student organization in the fall of 2013. They became a practicing team known as the Derby Devils in the spring of 2014. This project documents the creation and development a collegiate roller derby team as they go from a student organization to an athletic team. Collegiate roller derby is still in its infant stages and therefore the purpose of this project is to provide a guide for future collegiate roller derby teams as well as other athletic teams.
ContributorsLee, Alisa Yulim (Author) / Looser, Devoney (Thesis director) / Hultsman, Wendy (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Chemistry and Biochemistry (Contributor) / W. P. Carey School of Business (Contributor)
Created2014-12
136711-Thumbnail Image.png
Description
This manual provides a "how-to" framework for the development of a student-run clinic. The manual should be used as a resource, referring to the table of contents and summaries of topics for specific areas of interest. The manual details the phases for the development of a student-run clinic focusing on

This manual provides a "how-to" framework for the development of a student-run clinic. The manual should be used as a resource, referring to the table of contents and summaries of topics for specific areas of interest. The manual details the phases for the development of a student-run clinic focusing on underserved populations. The Student Health Outreach for Wellness (S.H.O.W.) Community Initiative in Phoenix, Arizona serves as the example. S.H.O.W. represents just one type of clinic structuring. As such, it is important to realize when developing a clinic that there are numerous clinic approaches based on community needs, volunteer support, and funding.
ContributorsWheeler, Shannon Christine (Author) / Thompson, Pamela (Thesis director) / Gaughan, Monica (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Human Evolution and Social Change (Contributor)
Created2014-12
137240-Thumbnail Image.png
Description
The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry

The goals of the styrene oxide adsorption experiments were to develop reliable isotherms of styrene oxide onto Dowex Optipore L-493 resin and onto mesoporous carbon adsorbents, in addition to determining the ideal conditions for styrene oxide production from E. coli. Adsorption is an effective means of separation used in industry to separate compounds, often organics from air and water. Styrene oxide adsorption runs without E. coli were conducted at concentrations ranging from 0.15 to 3.00 g/L with resin masses ranging from 0.1 to 0.5 g of Dowex Optipore L-493 and 0.5 to 0.75 g of mesoporous carbon adsorbent. Runs were conducted on a shake plate operating at 80 rpm for 24 hours at ambient temperature. Isotherms were developed from the results and then adsorption experiments with E. coli and L-493 were performed. Runs were conducted at glucose concentrations ranging from 20-40 g/L and resin masses of 0.100 g to 0.800 g. Samples were incubated for 72 hours and styrene oxide production was measured using an HPLC device. Specific loading values reached up to 0.356 g/g for runs without E. coli and nearly 0.003 g of styrene oxide was adsorbed by L-493 during runs with E. coli. Styrene oxide production was most effective at low resin masses and medium glucose concentrations when produced by E. coli.
ContributorsHsu, Joshua (Co-author) / Oremland, Zachary (Co-author) / Nielsen, David (Thesis director) / Staggs, Kyle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
DescriptionI founded the ASU Shakespeare Club and then directed a production of "A Midsummer Night's Dream" set in a contemporary mental institute. This thesis includes the revised script, a journal of the rehearsal process, an introductory essay, and production photos.
ContributorsGallagher, Nicole Marie (Author) / Fox, Cora (Thesis director) / Giner, Oscar (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2014-05
134902-Thumbnail Image.png
Description
Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their

Metal-organic frameworks (MOFs) are a new set of porous materials comprised of metals or metal clusters bonded together in a coordination system by organic linkers. They are becoming popular for gas separations due to their abilities to be tailored toward specific applications. Zirconium MOFs in particular are known for their high stability under standard temperature and pressure due to the strength of the Zirconium-Oxygen coordination bond. However, the acid modulator needed to ensure long range order of the product also prevents complete linker deprotonation. This leads to a powder product that cannot easily be incorporated into continuous MOF membranes. This study therefore implemented a new bi-phase synthesis technique with a deprotonating agent to achieve intergrowth in UiO-66 membranes. Crystal intergrowth will allow for effective gas separations and future permeation testing. During experimentation, successful intergrown UiO-66 membranes were synthesized and characterized. The degree of intergrowth and crystal orientations varied with changing deprotonating agent concentration, modulator concentration, and ligand:modulator ratios. Further studies will focus on achieving the same results on porous substrates.
ContributorsClose, Emily Charlotte (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
Description
Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose.

Styrene, a component of many rubber products, is currently synthesized from petroleum in a highly energy-intensive process. The Nielsen Laboratory at Arizona State has demonstrated a biochemical pathway by which E. coli can be engineered to produce styrene from the amino acid phenylalanine, which E. coli naturally synthesizes from glucose. However, styrene becomes toxic to E. coli above concentrations of 300 mg/L, severely limiting the large-scale applicability of the pathway. Thus, styrene must somehow be continuously removed from the system to facilitate higher yields and for the purposes of scale-up. The separation methods of pervaporation and solvent extraction were investigated to this end. Furthermore, the styrene pathway was extended by one step to produce styrene oxide, which is less volatile than styrene and theoretically simpler to recover. Adsorption of styrene oxide using the hydrophobic resin L-493 was attempted in order to improve the yield of styrene oxide and to provide additional proof of concept that the flux through the styrene pathway can be increased. The maximum styrene titer achieved was 1.2 g/L using the method of solvent extraction, but this yield was only possible when additional phenylalanine was supplemented to the system.
ContributorsMcDaniel, Matthew Cary (Author) / Nielsen, David (Thesis director) / Lind, Mary Laura (Committee member) / McKenna, Rebekah (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05