Matching Items (20)
Filtering by

Clear all filters

156042-Thumbnail Image.png
Description
The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial

The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial proteins expressed in human cell lines, yet they exhibit an organizing principle: that genes and proteins may be treated as modular units that can be moved from their native organism to a novel one. However, protein behavior is always unpredictable; drop-in functionality is not guaranteed.

My work characterizes how two different classes of tools behave in new contexts and explores methods to improve their functionality: 1. CRISPR/Cas9 in human cells and 2. quorum sensing networks in Escherichia coli.

1. The genome-editing tool CRISPR/Cas9 has facilitated easily targeted, effective, high throughput genome editing. However, Cas9 is a bacterially derived protein and its behavior in the complex microenvironment of the eukaryotic nucleus is not well understood. Using transgenic human cell lines, I found that gene-silencing heterochromatin impacts Cas9’s ability to bind and cut DNA in a site-specific manner and I investigated ways to improve CRISPR/Cas9 function in heterochromatin.

2. Bacteria use quorum sensing to monitor population density and regulate group behaviors such as virulence, motility, and biofilm formation. Homoserine lactone (HSL) quorum sensing networks are of particular interest to synthetic biologists because they can function as “wires” to connect multiple genetic circuits. However, only four of these networks have been widely implemented in engineered systems. I selected ten quorum sensing networks based on their HSL production profiles and confirmed their functionality in E. coli, significantly expanding the quorum sensing toolset available to synthetic biologists.
ContributorsDaer, René (Author) / Haynes, Karmella (Thesis advisor) / Brafman, David (Committee member) / Nielsen, David (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2017
156623-Thumbnail Image.png
Description
Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting,

Synthetic biology is an emerging field which melds genetics, molecular biology, network theory, and mathematical systems to understand, build, and predict gene network behavior. As an engineering discipline, developing a mathematical understanding of the genetic circuits being studied is of fundamental importance. In this dissertation, mathematical concepts for understanding, predicting, and controlling gene transcriptional networks are presented and applied to two synthetic gene network contexts. First, this engineering approach is used to improve the function of the guide ribonucleic acid (gRNA)-targeted, dCas9-regulated transcriptional cascades through analysis and targeted modification of the RNA transcript. In so doing, a fluorescent guide RNA (fgRNA) is developed to more clearly observe gRNA dynamics and aid design. It is shown that through careful optimization, RNA Polymerase II (Pol II) driven gRNA transcripts can be strong enough to exhibit measurable cascading behavior, previously only shown in RNA Polymerase III (Pol III) circuits. Second, inherent gene expression noise is used to achieve precise fractional differentiation of a population. Mathematical methods are employed to predict and understand the observed behavior, and metrics for analyzing and quantifying similar differentiation kinetics are presented. Through careful mathematical analysis and simulation, coupled with experimental data, two methods for achieving ratio control are presented, with the optimal schema for any application being dependent on the noisiness of the system under study. Together, these studies push the boundaries of gene network control, with potential applications in stem cell differentiation, therapeutics, and bio-production.
ContributorsMenn, David J (Author) / Wang, Xiao (Thesis advisor) / Kiani, Samira (Committee member) / Haynes, Karmella (Committee member) / Nielsen, David (Committee member) / Marshall, Pamela (Committee member) / Arizona State University (Publisher)
Created2018
136265-Thumbnail Image.png
Description
Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes

Transgene expression in mammalian cells has been shown to meet resistance in the form of silencing due to chromatin buildup within the cell. Interactions of proteins with chromatin modulate gene expression profiles. Synthetic Polycomb transcription factor (PcTF) variants have the potential to reactivate these silence transgenes as shown in Haynes & Silver 2011. PcTF variants have been constructed via TypeIIS assembly to further investigate this ability to reactive transgenes. Expression in mammalian cells was confirmed via fluorescence microscopy and red fluorescent protein (RFP) expression in cell lysate. Examination of any variation in conferment of binding strength of homologous Polycomb chromodomains (PCDs) to its trimethylated lysine residue target on histone three (H3K27me3) was investigated using a thermal shift assay. Results indicate that PcTF may not be a suitable protein for surveying with SYPRO Orange, a dye that produces a detectable signal when exposed to the hydrophobic domains of the melting protein. A cell line with inducible silencing of a chemiluminescent protein was used to determine the effects PcTF variants had on gene reactivation. Results show down-regulation of the target reporter gene. We propose this may be due to PcTF not binding to its target; this would cause PcTF to deplete transcriptional machinery in the nucleus. Alternatively, the CMV promoter could be sequestering transcriptional machinery in its hyperactive transcription of PcTF leading to widespread down-regulation. Finally, the activation domain used may not be appropriate for this cell type. Future PcTF variants will address these hypotheses by including multiple Polycomb chromodomains (PCDs) to alter the binding dynamics of PcTF to its target, and by incorporating alternative promoters and activation domains.
ContributorsGardner, Cameron Lee (Author) / Haynes, Karmella (Thesis director) / Stabenfeldt, Sarah (Committee member) / Barrett, The Honors College (Contributor) / Department of Finance (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133717-Thumbnail Image.png
Description
Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B.

Engineering is a heavily male-dominated field and females are significantly less likely to choose an engineering-related major or career path. At the age of six years old, females start believing that their male peers are smarter than them, leading them to pursue less ambitious careers. The children's book Lyla B. An Engineering Legacy was created to encourage more young girls to discover their own potential and pursue engineering as a career. To explore the efficacy of the book on its target consumers, a pilot study was performed with first and second grade children. The participants' engineering knowledge; fixed and failure mindset beliefs; STEM (Science, Technology, Engineering, and Math) interest, competency, and career aspirations; and stereotype beliefs were evaluated before and after being read the book to determine if the story has a positive impact on children. Additionally, the satisfaction of the participants towards both the book and main character were analyzed quantitatively and qualitatively. Overall, the results of the study suggest that the book has a positive impact on the interest and competency of STEM fields and the stereotype beliefs that the children had towards engineers. The study also suggests that the book decreases fixed and failure mindsets and that the participants were satisfied with the overall concept of the book and main character, Lyla.
ContributorsPiatak, Catherine (Co-author) / Seelhammer, Marissa Leigh (Co-author) / Torrence, Kelly (Co-author) / Miller, Cindy (Thesis director) / Jordan, Shawn (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133856-Thumbnail Image.png
Description
Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to

Synthetic biology is an emerging engineering disciple, which designs and controls biological systems for creation of materials, biosensors, biocomputing, and much more. To better control and engineer these systems, modular genetic components which allow for highly specific and high dynamic range genetic regulation are necessary. Currently the field struggles to demonstrate reliable regulators which are programmable and specific, yet also allow for a high dynamic range of control. Inspired by the characteristics of the RNA toehold switch in E. coli, this project attempts utilize artificial introns and complementary trans-acting RNAs for gene regulation in a eukaryote host, S. cerevisiae. Following modification to an artificial intron, splicing control with RNA hairpins was demonstrated. Temperature shifts led to increased protein production likely due to increased splicing due to hairpin loosening. Progress is underway to demonstrate trans-acting RNA interaction to control splicing. With continued development, we hope to provide a programmable, specific, and effective means for translational gene regulation in S. cerevisae.
ContributorsDorr, Brandon Arthur (Author) / Wang, Xiao (Thesis director) / Green, Alexander (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133879-Thumbnail Image.png
Description
In this creative project, our goal was to establish a student lead service organization dedicated to raising money and awareness for a selected medical issue through an interactive carnival event. In doing so, we were able to identify the potential obstacles and pathways that are required for service organizations within

In this creative project, our goal was to establish a student lead service organization dedicated to raising money and awareness for a selected medical issue through an interactive carnival event. In doing so, we were able to identify the potential obstacles and pathways that are required for service organizations within Arizona State University. Our experience provides a guideline for future students looking to organize charitable events on campus. This paper discusses several essential skills for running a charitable student organization, including establishing a brand, managing finances, cultivating business relationships, and marketing the cause. It is our hope that future students can learn from our experience and find success in similar endeavors.
ContributorsStoddard, Stacy Dawn (Co-author) / Wong, Brittney (Co-author) / Hultsman, Wendy (Thesis director) / Holland-Malcom, Jan (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Spending time outdoors can have a positive impact on the physical and mental health of individuals. These physiological and psychological benefits were comprehensively reviewed, accompanied by a brief history of these views in American society and how modern programs are promoting outdoor activity. Some of the populations targeted in this

Spending time outdoors can have a positive impact on the physical and mental health of individuals. These physiological and psychological benefits were comprehensively reviewed, accompanied by a brief history of these views in American society and how modern programs are promoting outdoor activity. Some of the populations targeted in this research include children, veterans, the elderly, and the clinically ill. A guidebook for Arizona outdoor adventures \u2014 containing original landscape photography \u2014 was created to encourage ASU students to explore local hikes, campsites, and other outdoor opportunities near the city of Phoenix. Each entry contained a brief description of the area or trail, along with the distance from the ASU Tempe campus and information on the length and difficulty of the hike, if applicable. A section at the end of the book was aimed at education readers on basic outdoor survival protocol, as many people venture into the wild with very little understanding of the dangers associated with their activities. A website was made that mirrors the guidebook, but was intended to be a more accessible method of sharing our information. The final component of the project involved maintaining a social media account over the course of the year, allowing us to expand our reach to people beyond ASU and this community. Over the course of the project, the account gained a large following, and several posted photos went on to be featured on prominent regional accounts. By combining the four components described previously, several resources were created for people, particularly students attending ASU, to gain a better understanding of the outdoor adventures available to them, and the benefits that spending time surrounded by nature can have.
ContributorsSwitzer, Hannah (Co-author) / Weinstein, Casey (Co-author) / Smith, Andrew (Thesis director) / Lefler, Scott (Committee member) / Kozakiewicz, Scott (Committee member) / Harrington Bioengineering Program (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12