Matching Items (998)
Filtering by

Clear all filters

161936-Thumbnail Image.png
Description
Many medical procedures, like surgeries, deal with the physical manipulation of sensitive internal tissues. Over time, new medical tools and techniques have been developed to improve the safety and efficacy of these procedures. Despite the leaps and bounds of progress made up to the present day, three major obstacles (among

Many medical procedures, like surgeries, deal with the physical manipulation of sensitive internal tissues. Over time, new medical tools and techniques have been developed to improve the safety and efficacy of these procedures. Despite the leaps and bounds of progress made up to the present day, three major obstacles (among others) persist, bleeding, pain, and the risk of infection. Advances in minimally invasive treatments have transformed many formerly risky surgical procedures into very safe and highly successful routines. Minimally invasive surgeries are characterized by small incision profiles compared to the large incisions in open surgeries, minimizing the aforementioned issues. Minimally invasive procedures lead to several benefits, such as shorter recovery time, fewer complications, and less postoperative pain. In minimally invasive surgery, doctors use various techniques to operate with less damage to the body than open surgery. Today, these procedures have an established, successful history and promising future. Steerable needles are one of the tools proposed for minimally invasive operations. Needle steering is a method for guiding a long, flexible needle through curved paths to reach targets deep in the body, eliminating the need for large incisions. In this dissertation, we present a new needle steering technology: magnetic needle steering. This technology is proposed to address the limitations of conventional needle steering that hindered its clinical applications. Magnetic needle steering eliminates excessive tissue damage, restrictions of the minimum radius of curvature, and the need for a complex nonlinear model, to name a few. It also allows fabricating the needle shaft out of soft and tissue-compliant materials. This is achieved by first developing an electromagnetic coil system capable of producing desired magnetic fields and gradients; then, a magnetically actuated needle is designed, and its effectiveness is experimentally evaluated. Afterward, the scalability of this technique was tested using permanent magnets controlled with a robotic arm. Furthermore, different configurations of permanent magnets and their influence on the magnetic field are investigated, enabling the possibility of designing a desired magnetic field for a specific surgical procedure and operation on a particular organ. Finally, potential future directions towards animal studies and clinical trials are discussed.
ContributorsIlami, Mahdi (Author) / Marvi, Hamid (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Nikkhah, Mehdi (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
161968-Thumbnail Image.png
Description
Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying

Multiphase flows are relevant to various industrial processes and are also a ubiquitous feature of nature. Atomization is a Gas-Liquid class of multiphase flow in which the liquid bulk disintegrates into a spectrum of drops. The final drop size distribution of fragmenting liquids is important and is crucial to quantifying the performance of atomizers. This thesis implements two models of ligament breakup. The first model provides a method to determine the droplet size distribution of fragmenting ligaments. The second model provides a relation between ligament stretching, aspect ratio and dimensionless properties like Ohnesorge and Weber numbers for ligaments being stretched by aerodynamic force. The first model by Villermaux et.al considers a ligament as a linear succession of liquid blobs which undergo continuous interplay during destabilization. The evolution of their size distribution ultimately rules the droplet size distribution which follow a gamma distribution [14]. The results show that the Direct Numerical Simulations (DNS) of ligaments with different perturbations fragmented into very few drops and cannot be used to confirm that they follow the predicted gamma distribution. The second model considers a ligament breakup due to Rayleigh-Plateau Instability and provides an equation for ligament stretching. Through test runs the proportionality constant in the equation is determined by a least square fit. The theoretical number of drops is compared with the number of drops resulting from the Direct Numerical Simulation of ligament with a sinusoidal perturbation. It is found that the wavelength of the initial perturbation does not determine the number of drops obtained by ligament breakup
ContributorsRama Krishna, Prathyush (Author) / Herrmann, Marcus (Thesis advisor) / Takahashi, Timothy (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2021
161969-Thumbnail Image.png
Description
This thesis lays down a foundation for more advanced work on bipeds by carefully examining cart-inverted pendulum systems (CIPS, often used to approximate each leg of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized by an instability (associated with the tendency of the pendulum

This thesis lays down a foundation for more advanced work on bipeds by carefully examining cart-inverted pendulum systems (CIPS, often used to approximate each leg of a biped) and associated closed loop performance tradeoffs. A CIPS is characterized by an instability (associated with the tendency of the pendulum to fall) and a right half plane (RHP, non-minimum phase) zero (associated with the cart displacement x). For such a system, the zero is typically close to (and smaller) than the instability. As such, a classical PK control structure would result in very poor sensitivity properties.It is therefore common to use a hierarchical inner-outer loop structure. As such, this thesis examines how such a structure can be used to improve sensitivity properties beyond a classic PK structure and systematically tradeoff sensitivity properties at the plant input/output. While the instability requires a minimum bandwidth at the plant input, the RHP zero imposes a maximum bandwidth on the cart displacement x. Three CIPs are examined – one with a long, short and an intermediately sized pendulum. We show that while the short pendulum system is the most unstable and requires the largest bandwidth at the plant input for stabilization (hardest to control), it also has the largest RHP zero. Consequently, it will permit the largest cart displacement x-bandwidth, and hence, one can argue that the short pendulum system is easiest to control. Similarly, the long pendulum system is the least unstable and requires smallest bandwidth at the plant input for stabilization (easiest to control). However, because this system also possesses the smallest RHP zero it will permit the smallest cart displacement x-bandwidth, and hence, one can argue that the long pendulum system is the hardest to control. Analogous “intermediate conclusions” can be drawn for the system with the “intermediately sized” pendulum. A set of simple academic examples (growing in plant and controller complexity) are introduced to illustrate basic tradeoffs and guide the presentation of the trade studies.
ContributorsSarkar, Soham (Author) / Rodriguez, Armando (Thesis advisor) / Berman, Spring (Thesis advisor) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
161953-Thumbnail Image.png
Description
Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets, ligaments, and droplets helps understand the flow physics and fluid

Identifying and tracking the location of the fluid interface is a fundamental aspect of multiphase flows. The Volume of Fluid (VOF) and Level Set methods are widely used to track the interface accurately. Analyzing the liquid structures such as sheets, ligaments, and droplets helps understand the flow physics and fluid breakup mechanism, aids in predicting droplet formation, improves atomization modeling and spray combustion. The thesis focuses on developing a new method to identify these liquid structures and devise a sphere model for droplet size prediction by augmenting concepts of linear algebra, rigid body dynamics, computational fluid mechanics, scientific computing, and visualization. The first part of the thesis presents a new approach to classify the fluid structures based on their length scales along their principal axes. This approach provides a smooth tracking of the structures' generation history instead of relying on high-speed video imaging of the experiment. A droplet is observed to have three equal length scales, while a ligament has one and a sheet has two significantly larger length scales. The subsequent breakup of ligaments and droplets depends on the atomizer geometry, operating conditions, and fluid physical properties. While it's straightforward to apply DNS and estimate this breakup, it is proven to be computationally expensive. The second part of the thesis deals with developing a sphere model that would essentially reduce this computational cost. After identifying a liquid structure, the sphere model utilizes the level set data in the domain to quantify the structure using spheres. By using the evolution information of these spheres as they separate from each other, the subsequent droplet size distribution can be evaluated.
ContributorsKashetty, Sindhuja (Author) / Herrmann, Marcus (Thesis advisor) / Wells, Valana (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2021
161986-Thumbnail Image.png
Description
Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents

Damage and failure of advanced composite materials and structures are often manifestations of nonlinear deformation that involve multiple mechanisms and their interactions at the constituent length scale. The presence and interactions of inelastic microscale constituents strongly influence the macroscopic damage anisotropy and useful residual life. The mechano-chemical interactions between constituents at the atomistic length scale play a more critical role with nanoengineered composites. Therefore, it is desirable to link composite behavior to specific microscopic constituent properties explicitly and lower length scale features using high-fidelity multiscale modeling techniques.In the research presented in this dissertation, an atomistically-informed multiscale modeling framework is developed to investigate damage evolution and failure in composites with radially-grown carbon nanotube (CNT) architecture. A continuum damage mechanics (CDM) model for the radially-grown CNT interphase region is developed with evolution equations derived using atomistic simulations. The developed model is integrated within a high-fidelity generalized method of cells (HFGMC) micromechanics theory and is used to parametrically investigate the influence of various input micro and nanoscale parameters on the mechanical properties, such as elastic stiffness, strength, and toughness. In addition, the inter-fiber stresses and the onset of damage in the presence of the interphase region are investigated to better understand the energy dissipation mechanisms that attribute to the enhancement in the macroscopic out-of-plane strength and toughness. Note that the HFGMC theory relies heavily on the description of microscale features and requires many internal variables, leading to high computational costs. Therefore, a novel reduced-order model (ROM) is also developed to surrogate full-field nonlinear HFGMC simulations and decrease the computational time and memory requirements of concurrent multiscale simulations significantly. The accurate prediction of composite sandwich materials' thermal stability and durability remains a challenge due to the variability of thermal-related material coefficients at different temperatures and the extensive use of bonded fittings. Consequently, the dissertation also investigates the thermomechanical performance of a complex composite sandwich space structure subject to thermal cycling. Computational finite element (FE) simulations are used to investigate the intrinsic failure mechanisms and damage precursors in honeycomb core composite sandwich structures with adhesively bonded fittings.
ContributorsVenkatesan, Karthik Rajan (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Yekani Fard, Masoud (Committee member) / Stoumbos, Tom (Committee member) / Arizona State University (Publisher)
Created2021
Description
Soft robots currently rely on additional hardware such as pumps, high voltage supplies,light generation sources, and magnetic field generators for their operation. These components resist miniaturization; thus, embedding them into small-scale soft robots is challenging. This issue limits their applications, especially in hyper-redundant mobile robots. This dissertation aims at addressing some of the

Soft robots currently rely on additional hardware such as pumps, high voltage supplies,light generation sources, and magnetic field generators for their operation. These components resist miniaturization; thus, embedding them into small-scale soft robots is challenging. This issue limits their applications, especially in hyper-redundant mobile robots. This dissertation aims at addressing some of the challenges associated with creating miniature, untethered soft robots that can function without any attachment to external power supplies or receiving any control signals from outside sources. This goal is accomplished by introducing a soft active material and a manufacturing method that together, facilitate the miniaturization of soft robots and effectively supports their autonomous, mobile operation without any connection to outside equipment or human intervention. The soft active material presented here is a hydrogel based on a polymer called poly(Nisopropylacrylamide) (PNIPAAm). This hydrogel responds to changes in the temperature and responds by expanding or contracting. A major challenge regarding PNIPAAm-based hydrogels is their slow response. This challenge is addressed by introducing a mixedsolvent photo-polymerization technique that alters the pore structure of the hydrogel and facilitates the water transport and thus the rate of volume change. Using this technique, the re-swelling response time of hydrogels is reduced to 2:4min – over 25 times faster than hydrogels demonstrated previously. The material properties of hydrogels including their response rate and Young’s modulus are tuned simultaneously. The one-step photopolymerization using UV light is performed in under 15 sec, which is a significant improvement over thermo-polymerization, which takes anywhere between a few minutes to several hours. Photopolymerization is key towards simplifying recipes, improving access to these techniques, and making them tractable for iterative design processes. To address the manufacturing challenges, soft voxel actuators (SVAs) are presented. SVAs are actuated by electrical currents through Joule heating. SVAs weighing only 100 mg require small footprint microcontrollers for their operation which can be embedded in the robotic system. The advantages of hydrogel-based SVAs are demonstrated through different robotic platforms namely a hyper-redundant manipulator with 16 SVAs, an untethered miniature robot for mobile underwater applications using 8 SVAs, and a gripper using 32 SVAs.
ContributorsKhodambashi, Roozbeh (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2021
161244-Thumbnail Image.png
Description
Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are

Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are required for the thermal interface material. Traditional solder materials for packaging cannot be used for these applications as they do not meet these requirements. Sintered nano-silver is a good candidate on account of its high thermal and electrical conductivity and very high melting point. The high temperature operating conditions of these devices lead to very high thermomechanical stresses that can adversely affect performance and also lead to failure. A number of these devices are mission critical and, therefore, there is a need for very high reliability. Thus, computational and nondestructive techniques and design methodology are needed to determine, characterize, and design the packages. Actual thermal cycling tests can be very expensive and time consuming. It is difficult to build test vehicles in the lab that are very close to the production level quality and therefore making comparisons or making predictions becomes a very difficult exercise. Virtual testing using a Finite Element Analysis (FEA) technique can serve as a good alternative. In this project, finite element analysis is carried out to help achieve this objective. A baseline linear FEA is performed to determine the nature and magnitude of stresses and strains that occur during the sintering step. A nonlinear coupled thermal and mechanical analysis is conducted for the sintering step to study the behavior more accurately and in greater detail. Damage and fatigue analysis are carried out for multiple thermal cycling conditions. The results are compared with the actual results from a prior study. A process flow chart outlining the FEA modeling process is developed as a template for the future work. A Coffin-Manson type relationship is developed to help determine the accelerated aging conditions and predict life for different service conditions.
ContributorsAmla, Tarun (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Zhuang, Houlong (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2020
Description

For my thesis I chose to complete a creative project. This project was to start my very own vocal studio as a vocal instructor. I began by researching different business components, such as, policies, contracts, pricing, websites, etc. I then used this research to form my own policies, contracts and

For my thesis I chose to complete a creative project. This project was to start my very own vocal studio as a vocal instructor. I began by researching different business components, such as, policies, contracts, pricing, websites, etc. I then used this research to form my own policies, contracts and social pages. I also took a survey of vocal students at ASU, with IRB approval, that covered what they have liked or disliked bout past and urgent vocal lessons, any advice they had fr me, and different singing techniques that they found to be helpful. After completing this I recruited students and began teaching. Half way through teaching I surveyed my sunsets, with IRB approval to find out what they enjoyed or disliked about lessons and then repeated this survey at the end to see if improvement was made. I followed this up with a survey and a summary of everything learned and discussed.

ContributorsMcallister, Marisa (Author) / Weiss, Stephanie (Thesis director) / DeMaris, Amanda (Committee member) / Barrett, The Honors College (Contributor) / School of Music, Dance and Theatre (Contributor)
Created2021-12
161206-Thumbnail Image.jpg
Description

"Calico" takes a look at the Japanese art form of "Manga" and what makes it stand out from similar art forms seen in the west such as comic books and graphic novels. After researching art techniques and the history leading up to modern manga practices, "Calico" summarizes it all together

"Calico" takes a look at the Japanese art form of "Manga" and what makes it stand out from similar art forms seen in the west such as comic books and graphic novels. After researching art techniques and the history leading up to modern manga practices, "Calico" summarizes it all together in the form of a manga itself. The story of "Calico" uses manga art techniques to tell the story of a young girl who finds solace in a street cat following the death of her mother.

ContributorsRamirez Cordero, Andrea (Author) / Boyce-Jacino, Katherine (Thesis director) / Deacon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Art (Contributor)
Created2021-12
161183-Thumbnail Image.png
Description

For my creative project thesis, I have designed and developed a video game called Amity Academy. Amity Academy is a strategic resource management simulator that aims to subvert genre expectations and challenge generally accepted definitions of success and leadership both in-game and in the real world. It does so by

For my creative project thesis, I have designed and developed a video game called Amity Academy. Amity Academy is a strategic resource management simulator that aims to subvert genre expectations and challenge generally accepted definitions of success and leadership both in-game and in the real world. It does so by moving the focus away from amassing large amounts of in-game currencies and becoming politically or militarily dominant towards caring for the denizens of the social unit the player controls. The player acts as an administrator at a school where they must make decisions on how to best run the institution. Although they are allowed to lead the school however they see fit, the emphasis is on prioritizing strong interpersonal and intracommunity relationships and connections and the wellbeing and happiness of those under their ward. Amity Academy is also part of the newly-emerging “wholesome” or “comfy” game genre. Unlike serious strategy games that can be stressful, Amity Academy presents a self-paced, low-stakes situation. This mood is further encouraged by calming environmental noises and music, a gentle color palette, and a charming art style. The game feels domestic and quaint, almost reminiscent of a Jane Wooster Scott or Mary Singleton painting. You can download and play Amity Academy here: https://mvaughn8.itch.io/amity-academy

ContributorsVaughn, Meghan (Author) / Kobayashi, Yoshihiro (Thesis director) / Holmes, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2021-12