Matching Items (10)
Filtering by

Clear all filters

134678-Thumbnail Image.png
Description
Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm

Many industries require workers in warehouse and stockroom environments to perform frequent lifting tasks. Over time these repeated tasks can lead to excess strain on the worker's body and reduced productivity. This project seeks to develop an exoskeletal wrist fixture to be used in conjunction with a powered exoskeleton arm to aid workers performing box lifting types of tasks. Existing products aimed at improving worker comfort and productivity typically employ either fully powered exoskeleton suits or utilize minimally powered spring arms and/or fixtures. These designs either reduce stress to the user's body through powered arms and grippers operated via handheld controls which have limited functionality, or they use a more minimal setup that reduces some load, but exposes the user's hands and wrists to injury by directing support to the forearm. The design proposed here seeks to strike a balance between size, weight, and power requirements and also proposes a novel wrist exoskeleton design which minimizes stress on the user's wrists by directly interfacing with the object to be picked up. The design of the wrist exoskeleton was approached through initially selecting degrees of freedom and a ROM (range of motion) to accommodate. Feel and functionality were improved through an iterative prototyping process which yielded two primary designs. A novel "clip-in" method was proposed to allow the user to easily attach and detach from the exoskeleton. Designs utilized a contact surface intended to be used with dry fibrillary adhesives to maximize exoskeleton grip. Two final designs, which used two pivots in opposite kinematic order, were constructed and tested to determine the best kinematic layout. The best design had two prototypes created to be worn with passive test arms that attached to the user though a specially designed belt.
ContributorsGreason, Kenneth Berend (Author) / Sugar, Thomas (Thesis director) / Holgate, Matthew (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134817-Thumbnail Image.png
Description
For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective

For the past two decades, advanced Limb Gait Simulators and Exoskeletons have been developed to improve walking rehabilitation. A Limb Gait Simulator is used to analyze the human step cycle and/or assist a user walking on a treadmill. Most modern limb gait simulators, such as ALEX, have proven themselves effective and reliable through their usage of motors, springs, cables, elastics, pneumatics and reaction loads. These mechanisms apply internal forces and reaction loads to the body. On the other hand, external forces are those caused by an external agent outside the system such as air, water, or magnets. A design for an exoskeleton using external forces has seldom been attempted by researchers. This thesis project focuses on the development of a Limb Gait Simulator based on a Pure External Force and has proven its effectiveness in generating torque on the human leg. The external force is generated through air propulsion using an Electric Ducted Fan (EDF) motor. Such a motor is typically used for remote control airplanes, but their applications can go beyond this. The objective of this research is to generate torque on the human leg through the control of the EDF engines thrust and the opening/closing of the reverse thruster flaps. This device qualifies as "assist as needed"; the user is entirely in control of how much assistance he or she may want. Static thrust values for the EDF engine are recorded using a thrust test stand. The product of the thrust (N) and the distance on the thigh (m) is the resulting torque. With the motor running at maximum RPM, the highest torque value reached was that of 3.93 (Nm). The motor EDF motor is powered by a 6S 5000 mAh LiPo battery. This torque value could be increased with the usage of a second battery connected in series, but this comes at a price. The designed limb gait simulator demonstrates that external forces, such as air, could have potential in the development of future rehabilitation devices.
ContributorsToulouse, Tanguy Nathan (Author) / Sugar, Thomas (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
166065-Thumbnail Image.png
Description

The effects of temperatures found commonly along the supply chain were explored when interacting with dendritic identifiers of various common materials. Regression analyses showed that there was no statistical significance in relating SIFT correspondence values to the surface temperature of the dendrites. Physical inspection helped evaluate the integrity of specific

The effects of temperatures found commonly along the supply chain were explored when interacting with dendritic identifiers of various common materials. Regression analyses showed that there was no statistical significance in relating SIFT correspondence values to the surface temperature of the dendrites. Physical inspection helped evaluate the integrity of specific material and substrate combinations along with possibilities for improvement in key point designation within SIFT and ORB image recognition software.

ContributorsMolzen, Noah (Author) / Hedges, Craig (Thesis director) / Reeves, James (Committee member) / Trujillo, Rhett (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
Description
The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.
ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Psychology (Contributor)
Created2022-05
165883-Thumbnail Image.png
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165884-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165885-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165886-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165887-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
165888-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsHoward, Brooke (Author) / Tieu, Lienna (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05