Matching Items (12)
Filtering by

Clear all filters

133932-Thumbnail Image.png
Description
The spread of fake news (rumors) has been a growing problem on the internet in the past few years due to the increase of social media services. People share fake news articles on social media sometimes without knowing that those articles contain false information. Not knowing whether an article is

The spread of fake news (rumors) has been a growing problem on the internet in the past few years due to the increase of social media services. People share fake news articles on social media sometimes without knowing that those articles contain false information. Not knowing whether an article is fake or real is a problem because it causes social media news to lose credibility. Prior research on fake news has focused on how to detect fake news, but efforts towards controlling fake news articles on the internet are still facing challenges. Some of these challenges include; it is hard to collect large sets of fake news data, it is hard to collect locations of people who are spreading fake news, and it is difficult to study the geographic distribution of fake news. To address these challenges, I am examining how fake news spreads in the United States (US) by developing a geographic visualization system for misinformation. I am collecting a set of fake news articles from a website called snopes.com. After collecting these articles I am extracting the keywords from each article and storing them in a file. I then use the stored keywords to search on Twitter in order to find out the locations of users who spread the rumors. Finally, I mark those locations on a map in order to show the geographic distribution of fake news. Having access to large sets of fake news data, knowing the locations of people who are spreading fake news, and being able to understand the geographic distribution of fake news will help in the efforts towards addressing the fake news problem on the internet by providing target areas.
ContributorsNgweta, Lilian Mathias (Author) / Liu, Huan (Thesis director) / Wu, Liang (Committee member) / Software Engineering (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133944-Thumbnail Image.png
Description
Imagining Climate (www.imaginingclimate.com) is a social media project that gauges how the public thinks about climate change in their community. Users will view climate data from 2017, view projected data for 2050, and then be given a prompt to imagine what the future looks like to them and write a

Imagining Climate (www.imaginingclimate.com) is a social media project that gauges how the public thinks about climate change in their community. Users will view climate data from 2017, view projected data for 2050, and then be given a prompt to imagine what the future looks like to them and write a short narrative story about their vision. Imagining Climate hopes to provide a public source of data for all and use imaginative writing to help users understand how other members of their communities think about climate change.
ContributorsLeung, Ellery Hermes (Author) / Popova, Laura (Thesis director) / Tarrant, Philip (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135148-Thumbnail Image.png
Description
\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no

\English is a programming language, a method of allowing programmers to write instructions such that a computer may understand and execute said instructions in the form of a program. Though many programming languages exist, this particular language is designed for ease of development and heavy optimizability in ways that no other programming language is. Building on the principles of Assembly level efficiency, referential integrity, and high order functionality, this language is able to produce extremely efficient code; meanwhile, programmatically defined English-based reusable syntax and a strong, static type system make \English easier to read and write than many existing programming languages. Its generalization of all language structures and components to operators leaves the language syntax open to project-specific syntactical structuring, making it more easily applicable in more cases. The thesis project requirements came in three parts: a compiler to compile \English code into NASM Assembly to produce a final program product; a standard library to define many of the basic operations of the language, including the creation of lists; and C translation library that would utilize \English properties to compile C code using the \English compiler. Though designed and partially coded, the compiler remains incomplete. The standard library, C translation library, and design of the language were completed. Additional tools regarding the language design and implementation were also created, including a Gedit syntax highlighting configuration file; usage documentation describing in a tutorial style the basic usage of the language; and more. Though the thesis project itself may be complete, the \English project will continue in order to produce a new language capable of the abilities possible with the design of this language.
ContributorsDavey, Connor (Author) / Gupta, Sandeep (Thesis director) / Bazzi, Rida (Committee member) / Calliss, Debra (Committee member) / Barrett, The Honors College (Contributor)
Created2016-05
131235-Thumbnail Image.png
DescriptionA two-way deterministic finite pushdown automaton ("2PDA") is developed for the Lua language. This 2PDA is evaluated against both a purpose-built Lua syntax test suite and the test suite used by the reference implementation of Lua, and fully passes both.
ContributorsStevens, Kevin A (Author) / Shoshitaishvili, Yan (Thesis director) / Wang, Ruoyu (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
166034-Thumbnail Image.png
Description
SparkUp! is a solution that was created by Jose Montes and Ninad Kulkarni in September of 2021. The pair noticed a few needs that they could help solve within the ASU community. Due to the Covid-19 pandemic, the average students' college experience was completely uprooted and replaced with asynchronous learning

SparkUp! is a solution that was created by Jose Montes and Ninad Kulkarni in September of 2021. The pair noticed a few needs that they could help solve within the ASU community. Due to the Covid-19 pandemic, the average students' college experience was completely uprooted and replaced with asynchronous learning and interactions which made it difficult for students to engage with other fellow students and make new friends. This also caused students to develop sedentary lifestyles since they no longer had to walk to campus, and they developed a routine of staying confined to their dorms throughout the day. SparkUp! is a Social Media app concept that solves these issues by connecting ASU students with other fellow students by helping them engage with one another in outdoor physical activities. Members can create and host their own hiking, cycling, kayaking, or other outdoor activity and they can set them for private or open use. Users can request to join an event by RSVPing through the app, and they also can connect with their new connections by utilizing the social media aspect of the app. Lastly, the app also tracks and maintains activity metrics such as miles traveled, steps taken, and overall time spent engaging in an activity. Through the needs discovery phase which took part from September-December 2021, the solutions that SparkUp! offers were validated. This prompted further analysis which led to an overall PESTLE analysis of SparkUp!’s overall potential ecosystem, the creation of a marketing strategy and the creation of an Alpha version of the app so that potential users could test the initial designs of the concept. This testing was done during April of 2022 which is aiding in gathering the data necessary to create a Minimal Value Product for future release.
ContributorsKulkarni, Ninad (Author) / Montes, Jose (Co-author) / Byrne, Jared (Thesis director) / Satpathy, Asish (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
Description
The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.
ContributorsTieu, Lienna (Author) / Howard, Brooke (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2022-05
165890-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsTieu, Lienna (Author) / Howard, Brooke (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165891-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsTieu, Lienna (Author) / Howard, Brooke (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165892-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsTieu, Lienna (Author) / Howard, Brooke (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05
165893-Thumbnail Image.jpg
Description

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace

The Difference Engine at Arizona State University developed the Women’s Power and Influence Index (WPI) in order to combat the systemic inequality faced by women in the workplace. It aims to analyze data, such as Equal Employment Opportunity data, from various Fortune 500 companies to provide a measure of workplace inequality as well as encourage these institutions to adopt more equitable policies. By rating companies based on what truly matters to women, ASU’s Difference Engine hopes to help both women in existing career paths as well as women seeking a new career or position in companies. However, in order for the WPI to become a relevant scoring metric of gender equality within the workplace, we must raise awareness about the issue of gender equality and of the index itself. By raising awareness about gender inequality as well as inspiring companies to further equality within their workplaces, the WPI will serve to have an integral role in increasing gender equality in the workplace. Our approach for raising awareness utilizes two different strategies: (1) establishing a new version of the WPI website that is both informative and aesthetically pleasing and (2) generating social media content on TikTok that appeal to a variety of audiences and introduce them to the WPI and our mission.

ContributorsTieu, Lienna (Author) / Howard, Brooke (Co-author) / Thomas, Elisa (Co-author) / Zaffar, Ehsan (Thesis director) / Gel, Esma (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05