Matching Items (62)

Filtering by

Clear all filters

151720-Thumbnail Image.png

One-dimensional fast transient simulator for modeling CdS/CdTe solar cells

Description

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement.

Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary energy sources replacing fossil fuels. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.

Contributors

Agent

Created

Date Created
2013

152312-Thumbnail Image.png

Electrical and thermal transport in alternative device technologies

Description

The goal of this research work is to develop a particle-based device simulator for modeling strained silicon devices. Two separate modules had to be developed for that purpose: A generic bulk Monte Carlo simulation code which in the long-time limit

The goal of this research work is to develop a particle-based device simulator for modeling strained silicon devices. Two separate modules had to be developed for that purpose: A generic bulk Monte Carlo simulation code which in the long-time limit solves the Boltzmann transport equation for electrons; and an extension to this code that solves for the bulk properties of strained silicon. One scattering table is needed for conventional silicon, whereas, because of the strain breaking the symmetry of the system, three scattering tables are needed for modeling strained silicon material. Simulation results for the average drift velocity and the average electron energy are in close agreement with published data. A Monte Carlo device simulation tool has also been employed to integrate the effects of self-heating into device simulation for Silicon on Insulator devices. The effects of different types of materials for buried oxide layers have been studied. Sapphire, Aluminum Nitride (AlN), Silicon dioxide (SiO2) and Diamond have been used as target materials of interest in the analysis and the effects of varying insulator layer thickness have also been investigated. It was observed that although AlN exhibits the best isothermal behavior, diamond is the best choice when thermal effects are accounted for.

Contributors

Agent

Created

Date Created
2013

151218-Thumbnail Image.png

Characterization of high-resistivity silicon bulk and silicon-on-insulator wafers

Description

High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate

High-Resistivity Silicon (HRS) substrates are important for low-loss, high-performance microwave and millimeter wave devices in high-frequency telecommunication systems. The highest resistivity of up to ~10,000 ohm.cm is Float Zone (FZ) grown Si which is produced in small quantities and moderate wafer diameter. The more common Czochralski (CZ) Si can achieve resistivities of around 1000 ohm.cm, but the wafers contain oxygen that can lead to thermal donor formation with donor concentration significantly higher (~1015 cm-3) than the dopant concentration (~1012-1013 cm-3) of such high-resistivity Si leading to resistivity changes and possible type conversion of high-resistivity p-type silicon. In this research capacitance-voltage (C-V) characterization is employed to study the donor formation and type conversion of p-type High-resistivity Silicon-On-Insulator (HRSOI) wafers and the challenges involved in C-V characterization of HRSOI wafers using a Schottky contact are highlighted. The maximum capacitance of bulk or Silicon-On-Insulator (SOI) wafers is governed by the gate/contact area. During C-V characterization of high-resistivity SOI wafers with aluminum contacts directly on the Si film (Schottky contact); it was observed that the maximum capacitance is much higher than that due to the contact area, suggesting bias spreading due to the distributed transmission line of the film resistance and the buried oxide capacitance. In addition, an "S"-shape C-V plot was observed in the accumulation region. The effects of various factors, such as: frequency, contact and substrate sizes, gate oxide, SOI film thickness, film and substrate doping, carrier lifetime, contact work-function, temperature, light, annealing temperature and radiation on the C-V characteristics of HRSOI wafers are studied. HRSOI wafers have the best crosstalk prevention capability compared to other types of wafers, which plays a major role in system-on-chip configuration to prevent coupling between high frequency digital and sensitive analog circuits. Substrate crosstalk in HRSOI and various factors affecting the crosstalk, such as: substrate resistivity, separation between devices, buried oxide (BOX) thickness, radiation, temperature, annealing, light, and device types are discussed. Also various ways to minimize substrate crosstalk are studied and a new characterization method is proposed. Owing to their very low doping concentrations and the presence of oxygen in CZ wafers, HRS wafers pose a challenge in resistivity measurement using conventional techniques such as four-point probe and Hall measurement methods. In this research the challenges in accurate resistivity measurement using four-point probe, Hall method, and C-V profile are highlighted and a novel approach to extract resistivity of HRS wafers based on Impedance Spectroscopy measurements using polymer dielectrics such as Polystyrene and Poly Methyl Methacrylate (PMMA) is proposed.

Contributors

Agent

Created

Date Created
2012

152460-Thumbnail Image.png

Total dose simulation for high reliability electronics

Description

New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design

New technologies enable the exploration of space, high-fidelity defense systems, lighting fast intercontinental communication systems as well as medical technologies that extend and improve patient lives. The basis for these technologies is high reliability electronics devised to meet stringent design goals and to operate consistently for many years deployed in the field. An on-going concern for engineers is the consequences of ionizing radiation exposure, specifically total dose effects. For many of the different applications, there is a likelihood of exposure to radiation, which can result in device degradation and potentially failure. While the total dose effects and the resulting degradation are a well-studied field and methodologies to help mitigate degradation have been developed, there is still a need for simulation techniques to help designers understand total dose effects within their design. To that end, the work presented here details simulation techniques to analyze as well as predict the total dose response of a circuit. In this dissertation the total dose effects are broken into two sub-categories, intra-device and inter-device effects in CMOS technology. Intra-device effects degrade the performance of both n-channel and p-channel transistors, while inter-device effects result in loss of device isolation. In this work, multiple case studies are presented for which total dose degradation is of concern. Through the simulation techniques, the individual device and circuit responses are modeled post-irradiation. The use of these simulation techniques by circuit designers allow predictive simulation of total dose effects, allowing focused design changes to be implemented to increase radiation tolerance of high reliability electronics.

Contributors

Agent

Created

Date Created
2014

152277-Thumbnail Image.png

Large area ultrapassivated silicon solar cells using heterojunction carrier collectors

Description

Silicon solar cells with heterojunction carrier collectors based on a-Si/c-Si heterojunction (SHJ) have a potential to overcome the limitations of the conventional diffused junction solar cells and become the next industry standard manufacturing technology of solar cells. A brand feature

Silicon solar cells with heterojunction carrier collectors based on a-Si/c-Si heterojunction (SHJ) have a potential to overcome the limitations of the conventional diffused junction solar cells and become the next industry standard manufacturing technology of solar cells. A brand feature of SHJ technology is ultrapassivated surfaces with already demonstrated 750 mV open circuit voltages (Voc) and 24.7% efficiency on large area solar cell. Despite very good results achieved in research and development, large volume manufacturing of high efficiency SHJ cells remains a fundamental challenge. The main objectives of this work were to develop a SHJ solar cell fabrication flow using industry compatible tools and processes in a pilot production environment, study the interactions between the used fabrication steps, identify the minimum set of optimization parameters and characterization techniques needed to achieve 20% baseline efficiency, and analyze the losses of power in fabricated SHJ cells by numerical and analytical modeling. This manuscript presents a detailed description of a SHJ solar cell fabrication flow developed at ASU Solar Power Laboratory (SPL) which allows large area solar cells with >750 mV Voc. SHJ cells on 135 um thick 153 cm2 area wafers with 19.5% efficiency were fabricated. Passivation quality of (i)a-Si:H film, bulk conductivity of doped a-Si films, bulk conductivity of ITO, transmission of ITO and the thickness of all films were identified as the minimum set of optimization parameters necessary to set up a baseline high efficiency SHJ fabrication flow. The preparation of randomly textured wafers to minimize the concentration of surface impurities and to avoid epitaxial growth of a-Si films was found to be a key challenge in achieving a repeatable and uniform passivation. This work resolved this issue by using a multi-step cleaning process based on sequential oxidation in nitric/acetic acids, Piranha and RCA-b solutions. The developed process allowed state of the art surface passivation with perfect repeatability and negligible reflectance losses. Two additional studies demonstrated 750 mV local Voc on 50 micron thick SHJ solar cell and < 1 cm/s effective surface recombination velocity on n-type wafers passivated by a-Si/SiO2/SiNx stack.

Contributors

Agent

Created

Date Created
2013

152285-Thumbnail Image.png

Codoped zinc oxide by a novel co-spray deposition technique for solar cells applications

Description

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 &ohm;/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.

Contributors

Agent

Created

Date Created
2013

151142-Thumbnail Image.png

Novel materials, grid design rule, and characterization methods for multi-junction solar cells

Description

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.

Contributors

Agent

Created

Date Created
2012

151947-Thumbnail Image.png

Study of self-heating effects in GaN HEMTs

Description

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that

GaN high electron mobility transistors (HEMTs) based on the III-V nitride material system have been under extensive investigation because of their superb performance as high power RF devices. Two dimensional electron gas(2-DEG) with charge density ten times higher than that of GaAs-based HEMT and mobility much higher than Si enables a low on-resistance required for RF devices. Self-heating issues with GaN HEMT and lack of understanding of various phenomena are hindering their widespread commercial development. There is a need to understand device operation by developing a model which could be used to optimize electrical and thermal characteristics of GaN HEMT design for high power and high frequency operation. In this thesis work a physical simulation model of AlGaN/GaN HEMT is developed using commercially available software ATLAS from SILVACO Int. based on the energy balance/hydrodynamic carrier transport equations. The model is calibrated against experimental data. Transfer and output characteristics are the key focus in the analysis along with saturation drain current. The resultant IV curves showed a close correspondence with experimental results. Various combinations of electron mobility, velocity saturation, momentum and energy relaxation times and gate work functions were attempted to improve IV curve correlation. Thermal effects were also investigated to get a better understanding on the role of self-heating effects on the electrical characteristics of GaN HEMTs. The temperature profiles across the device were observed. Hot spots were found along the channel in the gate-drain spacing. These preliminary results indicate that the thermal effects do have an impact on the electrical device characteristics at large biases even though the amount of self-heating is underestimated with respect to thermal particle-based simulations that solve the energy balance equations for acoustic and optical phonons as well (thus take proper account of the formation of the hot-spot). The decrease in drain current is due to decrease in saturation carrier velocity. The necessity of including hydrodynamic/energy balance transport models for accurate simulations is demonstrated. Possible ways for improving model accuracy are discussed in conjunction with future research.

Contributors

Agent

Created

Date Created
2013

151648-Thumbnail Image.png

Modeling of self-heating effects in 25nm SOI devices

Description

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today,

Since its inception about three decades ago, silicon on insulator (SOI) technology has come a long way to be included in the microelectronics roadmap. Earlier, scientists and engineers focused on ways to increase the microprocessor clock frequency and speed. Today, with smart phones and tablets gaining popularity, power consumption has become a major factor. In this thesis, self-heating effects in a 25nm fully depleted (FD) SOI device are studied by implementing a 2-D particle based device simulator coupled self-consistently with the energy balance equations for both acoustic and optical phonons. Semi-analytical expressions for acoustic and optical phonon scattering rates (all modes) are derived and evaluated using quadratic dispersion relationships. Moreover, probability distribution functions for the final polar angle after scattering is also computed and the rejection technique is implemented for its selection. Since the temperature profile varies throughout the device, temperature dependent scattering tables are used for the electron transport kernel. The phonon energy balance equations are also modified to account for inelasticity in acoustic phonon scattering for all branches. Results obtained from this simulation help in understanding self-heating and the effects it has on the device characteristics. The temperature profiles in the device show a decreasing trend which can be attributed to the inelastic interaction between the electrons and the acoustic phonons. This is further proven by comparing the temperature plots with the simulation results that assume the elastic and equipartition approximation for acoustic and the Einstein model for optical phonons. Thus, acoustic phonon inelasticity and the quadratic phonon dispersion relationships play a crucial role in studying self-heating effects.

Contributors

Agent

Created

Date Created
2013

150071-Thumbnail Image.png

Generalized Monte Carlo tool for investigating low-field and high field properties of materials using non-parabolic band structure model

Description

In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand

In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user to do that by keeping every parameter used to define a material, within the non-parabolic band approximation, a variable in the control of the user. A material is defined by defining its valleys, energies, valley effective masses and their directions. The types of scattering to be included can also be chosen. The non-parabolic band structure model is used. With the deployment of the generalized Monte Carlo tool onto www.nanoHUB.org the tool will be available to users around the world. This makes it a very useful educational tool that can be incorporated into curriculums. The tool is integrated with Rappture, to allow user-friendly access of the tool. The user can freely define a material in an easy systematic way without having to worry about the coding involved. The output results are automatically graphed and since the code incorporates an analytic band structure model, it is relatively fast. The versatility of the tool has been investigated and has produced results closely matching the experimental values for some common materials. The tool has been uploaded onto www.nanoHUB.org by integrating it with the Rappture interface. By using Rappture as the user interface, one can easily make changes to the current parameter sets to obtain even more accurate results.

Contributors

Agent

Created

Date Created
2011