Matching Items (43)
Filtering by

Clear all filters

157839-Thumbnail Image.png
Description
This dissertation explores thermal effects and electrical characteristics in metal-oxide-semiconductor field effect transistor (MOSFET) devices and circuits using a multiscale dual-carrier approach. Simulating electron and hole transport with carrier-phonon interactions for thermal transport allows for the study of complementary logic circuits with device level accuracy in electrical characteristics and thermal

This dissertation explores thermal effects and electrical characteristics in metal-oxide-semiconductor field effect transistor (MOSFET) devices and circuits using a multiscale dual-carrier approach. Simulating electron and hole transport with carrier-phonon interactions for thermal transport allows for the study of complementary logic circuits with device level accuracy in electrical characteristics and thermal effects. The electrical model is comprised of an ensemble Monte Carlo solution to the Boltzmann Transport Equation coupled with an iterative solution to two-dimensional (2D) Poisson’s equation. The thermal model solves the energy balance equations accounting for carrier-phonon and phonon-phonon interactions. Modeling of circuit behavior uses parametric iteration to ensure current and voltage continuity. This allows for modeling of device behavior, analyzing circuit performance, and understanding thermal effects.

The coupled electro-thermal approach, initially developed for individual n-channel MOSFET (NMOS) devices, now allows multiple devices in tandem providing a platform for better comparison with heater-sensor experiments. The latest electro-thermal solver allows simulation of multiple NMOS and p-channel MOSFET (PMOS) devices, providing a platform for the study of complementary MOSFET (CMOS) circuit behavior. Modeling PMOS devices necessitates the inclusion of hole transport and hole-phonon interactions. The analysis of CMOS circuits uses the electro-thermal device simulation methodology alongside parametric iteration to ensure current continuity. Simulating a CMOS inverter and analyzing the extracted voltage transfer characteristics verifies the efficacy of this methodology. This work demonstrates the effectiveness of the dual-carrier electro-thermal solver in simulating thermal effects in CMOS circuits.
ContributorsDaugherty, Robin (Author) / Vasileska, Dragica (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Ferry, David (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2019
157841-Thumbnail Image.png
Description
Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work

Modern Communication systems are progressively moving towards all-digital transmitters (ADTs) due to their high efficiency and potentially large frequency range. While significant work has been done on individual blocks within the ADT, there are few to no full systems designs at this point in time. The goal of this work is to provide a set of multiple novel block architectures which will allow for greater cohesion between the various ADT blocks. Furthermore, the design of these architectures are expected to focus on the practicalities of system design, such as regulatory compliance, which here to date has largely been neglected by the academic community. Amongst these techniques are a novel upconverted phase modulation, polyphase harmonic cancellation, and process voltage and temperature (PVT) invariant Delta Sigma phase interpolation. It will be shown in this work that the implementation of the aforementioned architectures allows ADTs to be designed with state of the art size, power, and accuracy levels, all while maintaining PVT insensitivity. Due to the significant performance enhancement over previously published works, this work presents the first feasible ADT architecture suitable for widespread commercial deployment.
ContributorsGrout, Kevin Samuel (Author) / Kitchen, Jennifer N (Thesis advisor) / Khalil, Waleed (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Garrity, Douglas (Committee member) / Arizona State University (Publisher)
Created2019
132563-Thumbnail Image.png
Description
Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with

Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with sensors that observe environmental factors. Due to the critical nature of these converters, as well as the vast range of environments in which they are used, it is important that they accurately sample data regardless of environmental factors. These environmental factors range from input noise and power supply variations to temperature and radiation, and it is important to know how each may affect the accuracy of the resulting data when designing circuits that depend upon the data from these ADCs. These environmental factors are considered hostile environments, as they each generally have a negative effect on the operation of an ADC. This thesis seeks to investigate the effects of several of these hostile environmental variables on the performance of analog to digital converters. Three different analog to digital converters with similar specifications were selected and analyzed under common hostile environments. Data was collected on multiple copies of an ADC and averaged together to analyze the results using multiple characteristics of converter performance. Performance metrics were obtained across a range of frequencies, input noise, input signal offsets, power supply voltages, and temperatures. The obtained results showed a clear decrease in performance farther from a room temperature environment, but the results for several other environmental variables showed either no significant correlation or resulted in inconclusive data.
ContributorsSwanson, Taylor Catherine (Co-author) / Millman, Hershel (Co-author) / Barnaby, Hugh (Thesis director) / Garrity, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05