Matching Items (151)
Filtering by

Clear all filters

150389-Thumbnail Image.png
Description
Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies

Radiation-induced gain degradation in bipolar devices is considered to be the primary threat to linear bipolar circuits operating in the space environment. The damage is primarily caused by charged particles trapped in the Earth's magnetosphere, the solar wind, and cosmic rays. This constant radiation exposure leads to early end-of-life expectancies for many electronic parts. Exposure to ionizing radiation increases the density of oxide and interfacial defects in bipolar oxides leading to an increase in base current in bipolar junction transistors. Radiation-induced excess base current is the primary cause of current gain degradation. Analysis of base current response can enable the measurement of defects generated by radiation exposure. In addition to radiation, the space environment is also characterized by extreme temperature fluctuations. Temperature, like radiation, also has a very strong impact on base current. Thus, a technique for separating the effects of radiation from thermal effects is necessary in order to accurately measure radiation-induced damage in space. This thesis focuses on the extraction of radiation damage in lateral PNP bipolar junction transistors and the space environment. It also describes the measurement techniques used and provides a quantitative analysis methodology for separating radiation and thermal effects on the bipolar base current.
ContributorsCampola, Michael J (Author) / Barnaby, Hugh J (Thesis advisor) / Holbert, Keith E. (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2011
150398-Thumbnail Image.png
Description
Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain equalizers that provide general means to counteract the ICI; (2) a family of multiple-resampling receiver designs dealing with distortions caused by user and/or path specific Doppler scaling effects; (3) proposal of using orthogonal frequency division multiple access (OFDMA) as an effective multiple access scheme for UWA communications; (4) the capacity evaluation for single-resampling versus multiple-resampling receiver designs. All of the proposed receiver designs have been verified both through simulations and emulations based on data collected in real-life UWA communications experiments. Particularly, the frequency domain equalizers are shown to be effective with significantly reduced pilot overhead and offer robustness against Doppler and timing estimation errors. The multiple-resampling designs, where each branch is tasked with the Doppler distortion of different paths and/or users, overcome the disadvantages of the commonly-used single-resampling receivers and yield significant performance gains. Multiple-resampling receivers are also demonstrated to be necessary for UWA OFDMA systems. The unique design effectively mitigates interuser interference (IUI), opening up the possibility to exploit advanced user subcarrier assignment schemes. Finally, the benefits of the multiple-resampling receivers are further demonstrated through channel capacity evaluation results.
ContributorsTu, Kai (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
150248-Thumbnail Image.png
Description
In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work,

In very small electronic devices the alternate capture and emission of carriers at an individual defect site located at the interface of Si:SiO2 of a MOSFET generates discrete switching in the device conductance referred to as a random telegraph signal (RTS) or random telegraph noise (RTN). In this research work, the integration of random defects positioned across the channel at the Si:SiO2 interface from source end to the drain end in the presence of different random dopant distributions are used to conduct Ensemble Monte-Carlo ( EMC ) based numerical simulation of key device performance metrics for 45 nm gate length MOSFET device. The two main performance parameters that affect RTS based reliability measurements are percentage change in threshold voltage and percentage change in drain current fluctuation in the saturation region. It has been observed as a result of the simulation that changes in both and values moderately decrease as the defect position is gradually moved from source end to the drain end of the channel. Precise analytical device physics based model needs to be developed to explain and assess the EMC simulation based higher VT fluctuations as experienced for trap positions at the source side. A new analytical model has been developed that simultaneously takes account of dopant number variations in the channel and depletion region underneath and carrier mobility fluctuations resulting from fluctuations in surface potential barriers. Comparisons of this new analytical model along with existing analytical models are shown to correlate with 3D EMC simulation based model for assessment of VT fluctuations percentage induced by a single interface trap. With scaling of devices beyond 32 nm node, halo doping at the source and drain are routinely incorporated to combat the threshold voltage roll-off that takes place with effective channel length reduction. As a final study on this regard, 3D EMC simulation method based computations of threshold voltage fluctuations have been performed for varying source and drain halo pocket length to illustrate the threshold voltage fluctuations related reliability problems that have been aggravated by trap positions near the source at the interface compared to conventional 45 nm MOSFET.
ContributorsAshraf, Nabil Shovon (Author) / Vasileska, Dragica (Thesis advisor) / Schroder, Dieter (Committee member) / Goodnick, Stephen (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
149937-Thumbnail Image.png
Description
There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon

There will always be a need for high current/voltage transistors. A transistor that has the ability to be both or either of these things is the silicon metal-silicon field effect transistor (MESFET). An additional perk that silicon MESFET transistors have is the ability to be integrated into the standard silicon on insulator (SOI) complementary metal oxide semiconductor (CMOS) process flow. This makes a silicon MESFET transistor a very valuable device for use in any standard CMOS circuit that may usually need a separate integrated circuit (IC) in order to switch power on or from a high current/voltage because it allows this function to be performed with a single chip thereby cutting costs. The ability for the MESFET to cost effectively satisfy the needs of this any many other high current/voltage device application markets is what drives the study of MESFET optimization. Silicon MESFETs that are integrated into standard SOI CMOS processes often receive dopings during fabrication that would not ideally be there in a process made exclusively for MESFETs. Since these remnants of SOI CMOS processing effect the operation of a MESFET device, their effect can be seen in the current-voltage characteristics of a measured MESFET device. Device simulations are done and compared to measured silicon MESFET data in order to deduce the cause and effect of many of these SOI CMOS remnants. MESFET devices can be made in both fully depleted (FD) and partially depleted (PD) SOI CMOS technologies. Device simulations are used to do a comparison of FD and PD MESFETs in order to show the advantages and disadvantages of MESFETs fabricated in different technologies. It is shown that PD MESFET have the highest current per area capability. Since the PD MESFET is shown to have the highest current capability, a layout optimization method to further increase the current per area capability of the PD silicon MESFET is presented, derived, and proven to a first order.
ContributorsSochacki, John (Author) / Thornton, Trevor J (Thesis advisor) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2011
149867-Thumbnail Image.png
Description
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
ContributorsKrishnamoorthi, Harish (Author) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
150798-Thumbnail Image.png
Description
Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal

Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal processing, pattern recognition, data mining, high fidelity probabilistic progressive damage models, physics based damage models, and regression analysis. Due to the wide application of carbon fiber reinforced composites and their multiscale failure mechanisms, it is necessary to emphasize the research of SHM on composite structures. This research develops a comprehensive framework for the damage detection, localization, quantification, and prediction of the remaining useful life of complex composite structures. To interrogate a composite structure, guided wave propagation is applied to thin structures such as beams and plates. Piezoelectric transducers are selected because of their versatility, which allows them to be used as sensors and actuators. Feature extraction from guided wave signals is critical to demonstrate the presence of damage and estimate the damage locations. Advanced signal processing techniques are employed to extract robust features and information. To provide a better estimate of the damage for accurate life estimation, probabilistic regression analysis is used to obtain a prediction model for the prognosis of complex structures subject to fatigue loading. Special efforts have been applied to the extension of SHM techniques on aerospace and spacecraft structures, such as UAV composite wings and deployable composite boom structures. Necessary modifications of the developed SHM techniques were conducted to meet the unique requirements of the aerospace structures. The developed SHM algorithms are able to accurately detect and quantify impact damages as well as matrix cracking introduced.
ContributorsLiu, Yingtao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Rajadas, John (Committee member) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
150071-Thumbnail Image.png
Description
In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user

In semiconductor physics, many properties or phenomena of materials can be brought to light through certain changes in the materials. Having a tool to define new material properties so as to highlight certain phenomena greatly increases the ability to understand that phenomena. The generalized Monte Carlo tool allows the user to do that by keeping every parameter used to define a material, within the non-parabolic band approximation, a variable in the control of the user. A material is defined by defining its valleys, energies, valley effective masses and their directions. The types of scattering to be included can also be chosen. The non-parabolic band structure model is used. With the deployment of the generalized Monte Carlo tool onto www.nanoHUB.org the tool will be available to users around the world. This makes it a very useful educational tool that can be incorporated into curriculums. The tool is integrated with Rappture, to allow user-friendly access of the tool. The user can freely define a material in an easy systematic way without having to worry about the coding involved. The output results are automatically graphed and since the code incorporates an analytic band structure model, it is relatively fast. The versatility of the tool has been investigated and has produced results closely matching the experimental values for some common materials. The tool has been uploaded onto www.nanoHUB.org by integrating it with the Rappture interface. By using Rappture as the user interface, one can easily make changes to the current parameter sets to obtain even more accurate results.
ContributorsHathwar, Raghuraj (Author) / Vasileska, Dragica (Thesis advisor) / Goodnick, Stephen M (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
150075-Thumbnail Image.png
Description
The long wavelength infrared region (LWIR) and mid wavelength infrared region (MWIR) are of great interest as detection in this region offers a wide range of real time applications. Optoelectronic devices operating in the LWIR and MWIR region offer potential applications such as; optical gas sensing, free-space optical communications, infrared

The long wavelength infrared region (LWIR) and mid wavelength infrared region (MWIR) are of great interest as detection in this region offers a wide range of real time applications. Optoelectronic devices operating in the LWIR and MWIR region offer potential applications such as; optical gas sensing, free-space optical communications, infrared counter-measures, biomedical and thermal imaging etc. HgCdTe is a prominent narrow bandgap material that operates in the LWIR region. The focus of this research work is to simulate and analyze the characteristics of a Hg1-xCdxTe photodetector. To achieve this, the tool `OPTODET' has been developed, where various device parameters can be varied and the resultant output can be analyzed. By the study of output characteristics in response to various changes in device parameters will allow users to understand the considerations that must be made in order to reach the optimum working point of an infrared detector. The tool which has been developed is a 1-D drift diffusion based simulator which solves the 1-D Poisson equation to determine potentials and utilizes the results of the 1-D electron and hole continuity equations to determine current. Parameters such as absorption co-efficient, quantum efficiency, dark current, noise, Transit time and detectivity can be simulated. All major recombination mechanisms such as SRH, Radiative and Auger recombination have been considered. Effects of band to band tunnelling have also been considered to correctly model the dark current characteristics.
ContributorsMuralidharan, Pradyumna (Author) / Vasileska, Dragica (Thesis advisor) / Wijewarnasuriya, Priyalal S. (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2011
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011