Matching Items (43)
Filtering by

Clear all filters

151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
151382-Thumbnail Image.png
Description
A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its

A signal with time-varying frequency content can often be expressed more clearly using a time-frequency representation (TFR), which maps the signal into a two-dimensional function of time and frequency, similar to musical notation. The thesis reviews one of the most commonly used TFRs, the Wigner distribution (WD), and discusses its application in Fourier optics: it is shown that the WD is analogous to the spectral dispersion that results from a diffraction grating, and time and frequency are similarly analogous to a one dimensional spatial coordinate and wavenumber. The grating is compared with a simple polychromator, which is a bank of optical filters. Another well-known TFR is the short time Fourier transform (STFT). Its discrete version can be shown to be equivalent to a filter bank, an array of bandpass filters that enable localized processing of the analysis signals in different sub-bands. This work proposes a signal-adaptive method of generating TFRs. In order to minimize distortion in analyzing a signal, the method modifies the filter bank to consist of non-overlapping rectangular bandpass filters generated using the Butterworth filter design process. The information contained in the resulting TFR can be used to reconstruct the signal, and perfect reconstruction techniques involving quadrature mirror filter banks are compared with a simple Fourier synthesis sum. The optimal filter parameters of the rectangular filters are selected adaptively by minimizing the mean-squared error (MSE) from a pseudo-reconstructed version of the analysis signal. The reconstruction MSE is proposed as an error metric for characterizing TFRs; a practical measure of the error requires normalization and cross correlation with the analysis signal. Simulations were performed to demonstrate the the effectiveness of the new adaptive TFR and its relation to swept-tuned spectrum analyzers.
ContributorsWeber, Peter C. (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2012
151846-Thumbnail Image.png
Description
Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased

Efficiency of components is an ever increasing area of importance to portable applications, where a finite battery means finite operating time. Higher efficiency devices need to be designed that don't compromise on the performance that the consumer has come to expect. Class D amplifiers deliver on the goal of increased efficiency, but at the cost of distortion. Class AB amplifiers have low efficiency, but high linearity. By modulating the supply voltage of a Class AB amplifier to make a Class H amplifier, the efficiency can increase while still maintaining the Class AB level of linearity. A 92dB Power Supply Rejection Ratio (PSRR) Class AB amplifier and a Class H amplifier were designed in a 0.24um process for portable audio applications. Using a multiphase buck converter increased the efficiency of the Class H amplifier while still maintaining a fast response time to respond to audio frequencies. The Class H amplifier had an efficiency above the Class AB amplifier by 5-7% from 5-30mW of output power without affecting the total harmonic distortion (THD) at the design specifications. The Class H amplifier design met all design specifications and showed performance comparable to the designed Class AB amplifier across 1kHz-20kHz and 0.01mW-30mW. The Class H design was able to output 30mW into 16Ohms without any increase in THD. This design shows that Class H amplifiers merit more research into their potential for increasing efficiency of audio amplifiers and that even simple designs can give significant increases in efficiency without compromising linearity.
ContributorsPeterson, Cory (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2013
152813-Thumbnail Image.png
Description
Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient

Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient classification of human activities by employing machine learning techniques. We are interested in the generalization of classical tools for signal approximation to newer spaces, such as rotation data, which is best studied in a non-Euclidean setting, and its application to activity analysis. Attributing to the non-linear nature of the rotation data space, which involve a heavy overload on the smart phone's processor and memory as opposed to feature extraction on the Euclidean space, indexing and compaction of the acquired sensor data is performed prior to feature extraction, to reduce CPU overhead and thereby increase the lifetime of the battery with a little loss in recognition accuracy of the activities. The sensor data represented as unit quaternions, is a more intrinsic representation of the orientation of smart phone compared to Euler angles (which suffers from Gimbal lock problem) or the computationally intensive rotation matrices. Classification algorithms are employed to classify these manifold sequences in the non-Euclidean space. By performing customized indexing (using K-means algorithm) of the evolved manifold sequences before feature extraction, considerable energy savings is achieved in terms of smart phone's battery life.
ContributorsSivakumar, Aswin (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2014
152757-Thumbnail Image.png
Description
Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained

Waveform design that allows for a wide variety of frequency-modulation (FM) has proven benefits. However, dictionary based optimization is limited and gradient search methods are often intractable. A new method is proposed using differential evolution to design waveforms with instantaneous frequencies (IFs) with cubic FM functions whose coefficients are constrained to the surface of the three dimensional unit sphere. Cubic IF functions subsume well-known IF functions such as linear, quadratic monomial, and cubic monomial IF functions. In addition, all nonlinear IF functions sufficiently approximated by a third order Taylor series over the unit time sequence can be represented in this space. Analog methods for generating polynomial IF waveforms are well established allowing for practical implementation in real world systems. By sufficiently constraining the search space to these waveforms of interest, alternative optimization methods such as differential evolution can be used to optimize tracking performance in a variety of radar environments. While simplified tracking models and finite waveform dictionaries have information theoretic results, continuous waveform design in high SNR, narrowband, cluttered environments is explored.
ContributorsPaul, Bryan (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel W (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
152758-Thumbnail Image.png
Description
Dynamic channel selection in cognitive radio consists of two main phases. The first phase is spectrum sensing, during which the channels that are occupied by the primary users are detected. The second phase is channel selection, during which the state of the channel to be used by the secondary user

Dynamic channel selection in cognitive radio consists of two main phases. The first phase is spectrum sensing, during which the channels that are occupied by the primary users are detected. The second phase is channel selection, during which the state of the channel to be used by the secondary user is estimated. The existing cognitive radio channel selection literature assumes perfect spectrum sensing. However, this assumption becomes problematic as the noise in the channels increases, resulting in high probability of false alarm and high probability of missed detection. This thesis proposes a solution to this problem by incorporating the estimated state of channel occupancy into a selection cost function. The problem of optimal single-channel selection in cognitive radio is considered. A unique approach to the channel selection problem is proposed which consists of first using a particle filter to estimate the state of channel occupancy and then using the estimated state with a cost function to select a single channel for transmission. The selection cost function provides a means of assessing the various combinations of unoccupied channels in terms of desirability. By minimizing the expected selection cost function over all possible channel occupancy combinations, the optimal hypothesis which identifies the optimal single channel is obtained. Several variations of the proposed cost-based channel selection approach are discussed and simulated in a variety of environments, ranging from low to high number of primary user channels, low to high levels of signal-to-noise ratios, and low to high levels of primary user traffic.
ContributorsZapp, Joseph (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Reisslein, Martin (Committee member) / Arizona State University (Publisher)
Created2014
152970-Thumbnail Image.png
Description
Neural activity tracking using electroencephalography (EEG) and magnetoencephalography (MEG) brain scanning methods has been widely used in the field of neuroscience to provide insight into the nervous system. However, the tracking accuracy depends on the presence of artifacts in the EEG/MEG recordings. Artifacts include any signals that do not originate

Neural activity tracking using electroencephalography (EEG) and magnetoencephalography (MEG) brain scanning methods has been widely used in the field of neuroscience to provide insight into the nervous system. However, the tracking accuracy depends on the presence of artifacts in the EEG/MEG recordings. Artifacts include any signals that do not originate from neural activity, including physiological artifacts such as eye movement and non-physiological activity caused by the environment.

This work proposes an integrated method for simultaneously tracking multiple neural sources using the probability hypothesis density particle filter (PPHDF) and reducing the effect of artifacts using feature extraction and stochastic modeling. Unique time-frequency features are first extracted using matching pursuit decomposition for both neural activity and artifact signals.

The features are used to model probability density functions for each signal type using Gaussian mixture modeling for use in the PPHDF neural tracking algorithm. The probability density function of the artifacts provides information to the tracking algorithm that can help reduce the probability of incorrectly estimating the dynamically varying number of current dipole sources and their corresponding neural activity localization parameters. Simulation results demonstrate the effectiveness of the proposed algorithm in increasing the tracking accuracy performance for multiple dipole sources using recordings that have been contaminated by artifacts.
ContributorsJiang, Jiewei (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel (Committee member) / Chakrabarti, Chaitali (Committee member) / Arizona State University (Publisher)
Created2014
153463-Thumbnail Image.png
Description
Parkinson's disease is a neurodegenerative condition diagnosed on patients with

clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated

number of patients living with Parkinson's disease around the world is seven

to ten million. Deep brain stimulation (DBS) provides substantial relief of the

Parkinson's disease is a neurodegenerative condition diagnosed on patients with

clinical history and motor signs of tremor, rigidity and bradykinesia, and the estimated

number of patients living with Parkinson's disease around the world is seven

to ten million. Deep brain stimulation (DBS) provides substantial relief of the motor

signs of Parkinson's disease patients. It is an advanced surgical technique that is used

when drug therapy is no longer sufficient for Parkinson's disease patients. DBS alleviates the motor symptoms of Parkinson's disease by targeting the subthalamic nucleus using high-frequency electrical stimulation.

This work proposes a behavior recognition model for patients with Parkinson's

disease. In particular, an adaptive learning method is proposed to classify behavioral

tasks of Parkinson's disease patients using local field potential and electrocorticography

signals that are collected during DBS implantation surgeries. Unique patterns

exhibited between these signals in a matched feature space would lead to distinction

between motor and language behavioral tasks. Unique features are first extracted

from deep brain signals in the time-frequency space using the matching pursuit decomposition

algorithm. The Dirichlet process Gaussian mixture model uses the extracted

features to cluster the different behavioral signal patterns, without training or

any prior information. The performance of the method is then compared with other

machine learning methods and the advantages of each method is discussed under

different conditions.
ContributorsDutta, Arindam (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Holbert, Keith E. (Committee member) / Bliss, Daniel W. (Committee member) / Arizona State University (Publisher)
Created2015
150353-Thumbnail Image.png
Description
Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find

Advancements in computer vision and machine learning have added a new dimension to remote sensing applications with the aid of imagery analysis techniques. Applications such as autonomous navigation and terrain classification which make use of image classification techniques are challenging problems and research is still being carried out to find better solutions. In this thesis, a novel method is proposed which uses image registration techniques to provide better image classification. This method reduces the error rate of classification by performing image registration of the images with the previously obtained images before performing classification. The motivation behind this is the fact that images that are obtained in the same region which need to be classified will not differ significantly in characteristics. Hence, registration will provide an image that matches closer to the previously obtained image, thus providing better classification. To illustrate that the proposed method works, naïve Bayes and iterative closest point (ICP) algorithms are used for the image classification and registration stages respectively. This implementation was tested extensively in simulation using synthetic images and using a real life data set called the Defense Advanced Research Project Agency (DARPA) Learning Applied to Ground Robots (LAGR) dataset. The results show that the ICP algorithm does help in better classification with Naïve Bayes by reducing the error rate by an average of about 10% in the synthetic data and by about 7% on the actual datasets used.
ContributorsMuralidhar, Ashwini (Author) / Saripalli, Srikanth (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2011
149902-Thumbnail Image.png
Description
For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it

For synthetic aperture radar (SAR) image formation processing, the chirp scaling algorithm (CSA) has gained considerable attention mainly because of its excellent target focusing ability, optimized processing steps, and ease of implementation. In particular, unlike the range Doppler and range migration algorithms, the CSA is easy to implement since it does not require interpolation, and it can be used on both stripmap and spotlight SAR systems. Another transform that can be used to enhance the processing of SAR image formation is the fractional Fourier transform (FRFT). This transform has been recently introduced to the signal processing community, and it has shown many promising applications in the realm of SAR signal processing, specifically because of its close association to the Wigner distribution and ambiguity function. The objective of this work is to improve the application of the FRFT in order to enhance the implementation of the CSA for SAR processing. This will be achieved by processing real phase-history data from the RADARSAT-1 satellite, a multi-mode SAR platform operating in the C-band, providing imagery with resolution between 8 and 100 meters at incidence angles of 10 through 59 degrees. The phase-history data will be processed into imagery using the conventional chirp scaling algorithm. The results will then be compared using a new implementation of the CSA based on the use of the FRFT, combined with traditional SAR focusing techniques, to enhance the algorithm's focusing ability, thereby increasing the peak-to-sidelobe ratio of the focused targets. The FRFT can also be used to provide focusing enhancements at extended ranges.
ContributorsNorthrop, Judith (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011