Matching Items (43)

Filtering by

Clear all filters

147550-Thumbnail Image.png

Development of Frequency Selective Surfaces for RF Interrogator Design

Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

Contributors

Agent

Created

Date Created
2021-05

152459-Thumbnail Image.png

Improving the reliability of NAND Flash, phase-change RAM and spin-torque transfer RAM

Description

Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and

Non-volatile memories (NVM) are widely used in modern electronic devices due to their non-volatility, low static power consumption and high storage density. While Flash memories are the dominant NVM technology, resistive memories such as phase change access memory (PRAM) and spin torque transfer random access memory (STT-MRAM) are gaining ground. All these technologies suffer from reliability degradation due to process variations, structural limits and material property shift. To address the reliability concerns of these NVM technologies, multi-level low cost solutions are proposed for each of them. My approach consists of first building a comprehensive error model. Next the error characteristics are exploited to develop low cost multi-level strategies to compensate for the errors. For instance, for NAND Flash memory, I first characterize errors due to threshold voltage variations as a function of the number of program/erase cycles. Next a flexible product code is designed to migrate to a stronger ECC scheme as program/erase cycles increases. An adaptive data refresh scheme is also proposed to improve memory reliability with low energy cost for applications with different data update frequencies. For PRAM, soft errors and hard errors models are built based on shifts in the resistance distributions. Next I developed a multi-level error control approach involving bit interleaving and subblock flipping at the architecture level, threshold resistance tuning at the circuit level and programming current profile tuning at the device level. This approach helped reduce the error rate significantly so that it was now sufficient to use a low cost ECC scheme to satisfy the memory reliability constraint. I also studied the reliability of a PRAM+DRAM hybrid memory system and analyzed the tradeoffs between memory performance, programming energy and lifetime. For STT-MRAM, I first developed an error model based on process variations. I developed a multi-level approach to reduce the error rates that consisted of increasing the W/L ratio of the access transistor, increasing the voltage difference across the memory cell and adjusting the current profile during write operation. This approach enabled use of a low cost BCH based ECC scheme to achieve very low block failure rates.

Contributors

Agent

Created

Date Created
2014

153935-Thumbnail Image.png

Radiation hardened clock design

Description

Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications

Clock generation and distribution are essential to CMOS microchips, providing synchronization to external devices and between internal sequential logic. Clocks in microprocessors are highly vulnerable to single event effects and designing reliable energy efficient clock networks for mission critical applications is a major challenge. This dissertation studies the basics of radiation hardening, essentials of clock design and impact of particle strikes on clocks in detail and presents design techniques for hardening complete clock systems in digital ICs.

Since the sequential elements play a key role in deciding the robustness of any clocking strategy, hardened-by-design implementations of triple-mode redundant (TMR) pulse clocked latches and physical design methodologies for using TMR master-slave flip-flops in application specific ICs (ASICs) are proposed. A novel temporal pulse clocked latch design for low power radiation hardened applications is also proposed. Techniques for designing custom RHBD clock distribution networks (clock spines) and ASIC clock trees for a radiation hardened microprocessor using standard CAD tools are presented. A framework for analyzing the vulnerabilities of clock trees in general, and study the parameters that contribute the most to the tree’s failure, including impact on controlled latches is provided. This is then used to design an integrated temporally redundant clock tree and pulse clocked flip-flop based clocking scheme that is robust to single event transients (SETs) and single event upsets (SEUs). Subsequently, designing robust clock delay lines for use in double data rate (DDRx) memory applications is studied in detail. Several modules of the proposed radiation hardened all-digital delay locked loop are designed and studied. Many of the circuits proposed in this entire body of work have been implemented and tested on a standard low-power 90-nm process.

Contributors

Agent

Created

Date Created
2015

147605-Thumbnail Image.png

Using Variable Gain Amplifiers to Normalize Varying Power RF Signals

Description

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power so that it is amplifier to a set power level. The paper details the theory behind this solutions as well as the design process which includes both simulations and physical testing of the actual circuit. It also analyses results of these tests and gives suggestions as to what could be done to further improve the design. The VGA based constant output power solution was designed as a section of a larger circuit which was developed as part of a senior capstone project, which is also briefly described in the paper.

Contributors

Agent

Created

Date Created
2021-05

152892-Thumbnail Image.png

Constrained energy optimization in heterogeneous platforms using generalized scaling models

Description

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that

Mobile platforms are becoming highly heterogeneous by combining a powerful multiprocessor system-on-chip (MpSoC) with numerous resources including display, memory, power management IC (PMIC), battery and wireless modems into a compact package. Furthermore, the MpSoC itself is a heterogeneous resource that integrates many processing elements such as CPU cores, GPU, video, image, and audio processors. As a result, optimization approaches targeting mobile computing needs to consider the platform at various levels of granularity.

Platform energy consumption and responsiveness are two major considerations for mobile systems since they determine the battery life and user satisfaction, respectively. In this work, the models for power consumption, response time, and energy consumption of heterogeneous mobile platforms are presented. Then, these models are used to optimize the energy consumption of baseline platforms under power, response time, and temperature constraints with and without introducing new resources. It is shown, the optimal design choices depend on dynamic power management algorithm, and adding new resources is more energy efficient than scaling existing resources alone. The framework is verified through actual experiments on Qualcomm Snapdragon 800 based tablet MDP/T. Furthermore, usage of the framework at both design and runtime optimization is also presented.

Contributors

Agent

Created

Date Created
2014

152413-Thumbnail Image.png

Extending efficiency in a DC/DC converter with automatic mode switching from PFM to PWM

Description

Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple

Switch mode DC/DC converters are suited for battery powered applications, due to their high efficiency, which help in conserving the battery lifetime. Fixed Frequency PWM based converters, which are generally used for these applications offer good voltage regulation, low ripple and excellent efficiency at high load currents. However at light load currents, fixed frequency PWM converters suffer from poor efficiencies The PFM control offers higher efficiency at light loads at the cost of a higher ripple. The PWM has a poor efficiency at light loads but good voltage ripple characteristics, due to a high switching frequency. To get the best of both control modes, both loops are used together with the control switched from one loop to another based on the load current. Such architectures are referred to as hybrid converters. While transition from PFM to PWM loop can be made by estimating the average load current, transition from PFM to PWM requires voltage or peak current sensing. This theses implements a hysteretic PFM solution for a synchronous buck converter with external MOSFET's, to achieve efficiencies of about 80% at light loads. As the PFM loop operates independently of the PWM loop, a transition circuit for automatically transitioning from PFM to PWM is implemented. The transition circuit is implemented digitally without needing any external voltage or current sensing circuit.

Contributors

Agent

Created

Date Created
2014

152421-Thumbnail Image.png

Radiation hardened pulse based D flip flop design

Description

ABSTRACT The D flip flop acts as a sequencing element while designing any pipelined system. Radiation Hardening by Design (RHBD) allows hardened circuits to be fabricated on commercially available CMOS manufacturing process. Recently, single event transients (SET's) have become as

ABSTRACT The D flip flop acts as a sequencing element while designing any pipelined system. Radiation Hardening by Design (RHBD) allows hardened circuits to be fabricated on commercially available CMOS manufacturing process. Recently, single event transients (SET's) have become as important as single event upset (SEU) in radiation hardened high speed digital designs. A novel temporal pulse based RHBD flip-flop design is presented. Temporally delayed pulses produced by a radiation hardened pulse generator design samples the data in three redundant pulse latches. The proposed RHBD flip-flop has been statistically designed and fabricated on 90 nm TSMC LP process. Detailed simulations of the flip-flop operation in both normal and radiation environments are presented. Spatial separation of critical nodes for the physical design of the flip-flop is carried out for mitigating multi-node charge collection upsets. The proposed flip-flop is also used in commercial CAD flows for high performance chip designs. The proposed flip-flop is used in the design and auto-place-route (APR) of an advanced encryption system and the metrics analyzed.

Contributors

Agent

Created

Date Created
2014

153039-Thumbnail Image.png

A low power digital controller for DC-DC converter applications with integrated PFM mode detector

Description

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L)

Switching Converters (SC) are an excellent choice for hand held devices due to their high power conversion efficiency. However, they suffer from two major drawbacks. The first drawback is that their dynamic response is sensitive to variations in inductor (L) and capacitor (C) values. A cost effective solution is implemented by designing a programmable digital controller. Despite variations in L and C values, the target dynamic response can be achieved by computing and programming the filter coefficients for a particular L and C. Besides, digital controllers have higher immunity to environmental changes such as temperature and aging of components. The second drawback of SCs is their poor efficiency during low load conditions if operated in Pulse Width Modulation (PWM) mode. However, if operated in Pulse Frequency Modulation (PFM) mode, better efficiency numbers can be achieved. A mostly-digital way of detecting PFM mode is implemented. Besides, a slow serial interface to program the chip, and a high speed serial interface to characterize mixed signal blocks as well as to ship data in or out for debug purposes are designed. The chip is taped out in 0.18µm IBM's radiation hardened CMOS process technology. A test board is built with the chip, external power FETs and driver IC. At the time of this writing, PWM operation, PFM detection, transitions between PWM and PFM, and both serial interfaces are validated on the test board.

Contributors

Agent

Created

Date Created
2014

153820-Thumbnail Image.png

System identification of linear and switching regulators using switched capacitor correlator

Description

Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits employ feedback to achieve good load and line regulation. The

Power Management circuits are employed in almost all electronic equipment and they have energy storage elements (capacitors and inductors) as building blocks along with other active circuitry. Power management circuits employ feedback to achieve good load and line regulation. The feedback loop is designed at an operating point and component values are chosen to meet that design requirements. But the capacitors and inductors are subject to variations due to temperature, aging and load stress. Due to these variations, the feedback loop can cross its robustness margins and can lead to degraded performance and potential instability. Another issue in power management circuits is the measurement of their frequency response for stability assessment. The standard techniques used in production test environment require expensive measurement equipment (Network Analyzer) and time. These two issues of component variations and frequency response measurement can be addressed if the frequency response of the power converter is used as measure of component (capacitor and inductor) variations. So, a single solution of frequency response measurement solves both the issues. This work examines system identification (frequency response measurement) of power management circuits based on cross correlation technique and proposes the use of switched capacitor correlator for this purpose. A switched capacitor correlator has been designed and used in the system identification of Linear and Switching regulators. The obtained results are compared with the standard frequency response measurement methods of power converters.

Contributors

Agent

Created

Date Created
2015

153829-Thumbnail Image.png

Neutron-gamma ray discrimination using normalized cross correlation

Description

The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower

The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape discrimination techniques are charge comparison method, pulse gradient method and frequency gradient method. In the work presented here, we have applied a normalized cross correlation (NCC) approach to real neutron and gamma ray pulses produced by exposing CLYC scintillators to a mixed radiation environment generated by 137Cs, 22Na, 57Co and 252Cf/AmBe at different event rates. The cross correlation analysis produces distinctive results for measured neutron pulses and gamma ray pulses when they are cross correlated with reference neutron and/or gamma templates. NCC produces good separation between neutron and gamma rays at low (< 100 kHz) to mid event rate (< 200 kHz). However, the separation disappears at high event rate (> 200 kHz) because of pileup, noise and baseline shift. This is also confirmed by observing the pulse shape discrimination (PSD) plots and figure of merit (FOM) of NCC. FOM is close to 3, which is good, for low event rate but rolls off significantly along with the increase in the event rate and reaches 1 at high event rate. Future efforts are required to reduce the noise by using better hardware system, remove pileup and detect the NCC shapes of neutron and gamma rays using advanced techniques.

Contributors

Agent

Created

Date Created
2015