Matching Items (5)
Filtering by

Clear all filters

136314-Thumbnail Image.png
Description
The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of

The world of a hearing impaired person is much different than that of somebody capable of discerning different frequencies and magnitudes of sound waves via their ears. This is especially true when hearing impaired people play video games. In most video games, surround sound is fed through some sort of digital output to headphones or speakers. Based on this information, the gamer can discern where a particular stimulus is coming from and whether or not that is a threat to their wellbeing within the virtual world. People with reliable hearing have a distinct advantage over hearing impaired people in the fact that they can gather information not just from what is in front of them, but from every angle relative to the way they're facing. The purpose of this project was to find a way to even the playing field, so that a person hard of hearing could also receive the sensory feedback that any other person would get while playing video games To do this, visual surround sound was created. This is a system that takes a surround sound input, and illuminates LEDs around the periphery of glasses based on the direction, frequency and amplitude of the audio wave. This provides the user with crucial information on the whereabouts of different elements within the game. In this paper, the research and development of Visual Surround Sound is discussed along with its viability in regards to a deaf person's ability to learn the technology, and decipher the visual cues.
ContributorsKadi, Danyal (Co-author) / Burrell, Nathaneal (Co-author) / Butler, Kristi (Co-author) / Wright, Gavin (Co-author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2015-05
137100-Thumbnail Image.png
Description
Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise

Multiple-channel detection is considered in the context of a sensor network where data can be exchanged directly between sensor nodes that share a common edge in the network graph. Optimal statistical tests used for signal source detection with multiple noisy sensors, such as the Generalized Coherence (GC) estimate, use pairwise measurements from every pair of sensors in the network and are thus only applicable when the network graph is completely connected, or when data are accumulated at a common fusion center. This thesis presents and exploits a new method that uses maximum-entropy techniques to estimate measurements between pairs of sensors that are not in direct communication, thereby enabling the use of the GC estimate in incompletely connected sensor networks. The research in this thesis culminates in a main conjecture supported by statistical tests regarding the topology of the incomplete network graphs.
ContributorsCrider, Lauren Nicole (Author) / Cochran, Douglas (Thesis director) / Renaut, Rosemary (Committee member) / Kosut, Oliver (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2014-05
147972-Thumbnail Image.png
Description

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which

Lossy compression is a form of compression that slightly degrades a signal in ways that are ideally not detectable to the human ear. This is opposite to lossless compression, in which the sample is not degraded at all. While lossless compression may seem like the best option, lossy compression, which is used in most audio and video, reduces transmission time and results in much smaller file sizes. However, this compression can affect quality if it goes too far. The more compression there is on a waveform, the more degradation there is, and once a file is lossy compressed, this process is not reversible. This project will observe the degradation of an audio signal after the application of Singular Value Decomposition compression, a lossy compression that eliminates singular values from a signal’s matrix.

ContributorsHirte, Amanda (Author) / Kosut, Oliver (Thesis director) / Bliss, Daniel (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132010-Thumbnail Image.png
Description
Complex human controls is a topic of much interest in the fields of robotics, manufacturing, space exploration and many others. Even simple tasks that humans perform with ease can be extremely complicated when observed from a controls and complex systems perspective. One such simple task is that of a human

Complex human controls is a topic of much interest in the fields of robotics, manufacturing, space exploration and many others. Even simple tasks that humans perform with ease can be extremely complicated when observed from a controls and complex systems perspective. One such simple task is that of a human carrying and moving a coffee cup. Though this may be a mundane task for humans, when this task is modelled and analyzed, the system may be quite chaotic in nature. Understanding such systems is key to the development robots and autonomous systems that can perform these tasks themselves.

The coffee cup system can be simplified and modeled by a cart-and-pendulum system. Bazzi et al. and Maurice et al. present two different cart-and-pendulum systems to represent the coffee cup system [1],[2]. The purpose of this project was to build upon these systems and to gain a better understanding of the coffee cup system and to determine where chaos existed within the system. The honors thesis team first worked with their senior design group to develop a mathematical model for the cart-and-pendulum system based on the Bazzi and Maurice papers [1],[2]. This system was analyzed and then built upon by the honors thesis team to build a cart-and-two-pendulum model to represent the coffee cup system more accurately.

Analysis of the single pendulum model showed that there exists a low frequency region where the pendulum and the cart remain in phase with each other and a high frequency region where the cart and pendulum have a π phase difference between them. The transition point of the low and high frequency region is determined by the resonant frequency of the pendulum. The analysis of the two-pendulum system also confirmed this result and revealed that differences in length between the pendulum cause the pendulums to transition to the high frequency regions at separate frequency. The pendulums have different resonance frequencies and transition into the high frequency region based on their own resonant frequency. This causes a range of frequencies where the pendulums are out of phase from each other. After both pendulums have transitioned, they remain in phase with each other and out of phase from the cart.

However, if the length of the pendulum is decreased too much, the system starts to exhibit chaotic behavior. The short pendulum starts to act in a chaotic manner and the phase relationship between the pendulums and the carts is no longer maintained. Since the pendulum length represents the distance between the particle of coffee and the top of the cup, this implies that coffee near the top of the cup would cause the system to act chaotically. Further analysis would be needed to determine the reason why the length affects the system in this way.
ContributorsZindani, Abdul Rahman (Co-author) / Crane, Kari (Co-author) / Lai, Ying-Cheng (Thesis director) / Jiang, Junjie (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
164885-Thumbnail Image.png
Description

In this research, I surveyed existing methods of characterizing Epilepsy from Electroencephalogram (EEG) data, including the Random Forest algorithm, which was claimed by many researchers to be the most effective at detecting epileptic seizures [7]. I observed that although many papers claimed a detection of >99% using Random Forest, it

In this research, I surveyed existing methods of characterizing Epilepsy from Electroencephalogram (EEG) data, including the Random Forest algorithm, which was claimed by many researchers to be the most effective at detecting epileptic seizures [7]. I observed that although many papers claimed a detection of >99% using Random Forest, it was not specified “when” the detection was declared within the 23.6 second interval of the seizure event. In this research, I created a time-series procedure to detect the seizure as early as possible within the 23.6 second epileptic seizure window and found that the detection is effective (> 92%) as early as the first few seconds of the epileptic episode. I intend to use this research as a stepping stone towards my upcoming Masters thesis research where I plan to expand the time-series detection mechanism to the pre-ictal stage, which will require a different dataset.

ContributorsBou-Ghazale, Carine (Author) / Lai, Ying-Cheng (Thesis director) / Berisha, Visar (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05