Matching Items (7)
Filtering by

Clear all filters

152518-Thumbnail Image.png
Description
In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction,

In the interest of expediting future pilot line start-ups for solar cell research, the development of Arizona State University's student-led pilot line at the Solar Power Laboratory is discussed extensively within this work. Several experiments and characterization techniques used to formulate and optimize a series of processes for fabricating diffused-junction, screen-printed silicon solar cells are expounded upon. An experiment is conducted in which the thickness of a PECVD deposited anti-reflection coating (ARC) is varied across several samples and modeled as a function of deposition time. Using this statistical model in tandem with reflectance measurements for each sample, the ARC thickness is optimized to increase light trapping in the solar cells. A response surface model (RSM) experiment is conducted in which 3 process parameters are varied on the PECVD tool for the deposition of the ARCs on several samples. A contactless photoconductance decay (PCD) tool is used to measure the dark saturation currents of these samples. A statistical analysis is performed using JMP in which optimum deposition parameters are found. A separate experiment shows an increase in the passivation quality of the a-SiNx:H ARCs deposited on the solar cells made on the line using these optimum parameters. A RSM experiment is used to optimize the printing process for a particular silver paste in a similar fashion, the results of which are confirmed by analyzing the series resistance of subsequent cells fabricated on the line. An in-depth explanation of a more advanced analysis using JMP and PCD measurements on the passivation quality of 3 aluminum back-surface fields (BSF) is given. From this experiment, a comparison of the means is conducted in order to choose the most effective BSF paste for cells fabricated on the line. An experiment is conducted in parallel which confirms the results via Voc measurements. It is shown that in a period of 11 months, the pilot line went from producing a top cell efficiency of 11.5% to 17.6%. Many of these methods used for the development of this pilot line are equally applicable to other cell structures, and can easily be applied to other solar cell pilot lines.
ContributorsPickett, Guy (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2014
152632-Thumbnail Image.png
Description
Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime.

Silicon (Si) solar cells are the dominant technology used in the Photovoltaics industry. Field-effect passivation by means of electrostatic charges stored in an overlying insulator on a silicon solar cell has been proven to be a significantly efficient way to reduce effective surface recombination velocity and increase minority carrier lifetime. Silicon nitride (SiNx) films have been extensively used as passivation layers. The capability to store charges makes SiNx a promising material for excellent feild effect passivation. In this work, symmetrical Si/SiO2/SiNx stacks are developed to study the effect of charges in SiNx films. SiO2 films work as barrier layers. Corona charging technique showed the ability to inject charges into the SiNx films in a short time. Minority carrier lifetimes of the Czochralski (CZ) Si wafers increased significantly after either positive or negative charging. A fast and contactless method to characterize the charged overlying insulators on Si wafer through lifetime measurements is proposed and studied in this work, to overcome the drawbacks of capacitance-voltage (CV) measurements such as time consuming, induction of contanmination and hysteresis effect, etc. Analytical simulations showed behaviors of inverse lifetime (Auger corrected) vs. minority carrier density curves depend on insulator charge densities (Nf). From the curve behavior, the Si surface condition and region of Nf can be estimated. When the silicon surface is at high strong inversion or high accumulation, insulator charge density (Nf) or surface recombination velocity parameters (Sn0 and Sp0) can be determined from the slope of inverse lifetime curves, if the other variable is known. If Sn0 and Sp0 are unknown, Nf values of different samples can be compared as long as all have similar Sn0 and Sp0 values. Using the saturation current density (J0) and intercept fit extracted from the lifetime measurement, the bulk lifetime can be calculated. Therefore, this method is feasible and promising for charged insulator characterization.
ContributorsYang, Qun (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2014
152947-Thumbnail Image.png
Description
Crystalline silicon has a relatively low absorption coefficient, and therefore, in thin silicon solar cells surface texturization plays a vital role in enhancing light absorption. Texturization is needed to increase the path length of light through the active absorbing layer. The most popular choice for surface texturization of crystalline silicon

Crystalline silicon has a relatively low absorption coefficient, and therefore, in thin silicon solar cells surface texturization plays a vital role in enhancing light absorption. Texturization is needed to increase the path length of light through the active absorbing layer. The most popular choice for surface texturization of crystalline silicon is the anisotropic wet-etching that yields pyramid-like structures. These structures have shown to be both simple to fabricate and efficient in increasing the path length; they outperform most competing surface texture. Recent studies have also shown these pyramid-like structures are not truly square-based 54.7 degree pyramids but have variable base angles and shapes. In addition, their distribution is not regular -- as is often assumed in optical models -- but random. For accurate prediction of performance of silicon solar cells, it is important to investigate the true nature of the surface texture that is achieved using anisotropic wet-etching, and its impact on light trapping. We have used atomic force microscopy (AFM) to characterize the surface topology by obtaining actual height maps that serve as input to ray tracing software. The height map also yields the base angle distribution, which is compared to the base angle distribution obtained by analyzing the angular reflectance distribution measured by spectrophotometer to validate the shape of the structures. Further validation of the measured AFM maps is done by performing pyramid density comparison with SEM micrograph of the texture. Last method employed for validation is Focused Ion Beam (FIB) that is used to mill the long section of pyramids to reveal their profile and so from that the base angle distribution is measured. After that the measured map is modified and the maps are generated keeping the positional randomness (the positions of pyramids) and height of the pyramids the same, but changing their base angles. In the end a ray tracing software is used to compare the actual measured AFM map and also the modified maps using their reflectance, transmittance, angular scattering and most importantly path length enhancement, absorbance and short circuit current with lambertian scatterer.
ContributorsManzoor, Salman (Author) / Holman, Zachary (Thesis advisor) / Goodnick, Stephen (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2014
153902-Thumbnail Image.png
Description
The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells

The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells favour a decrease in production costs and improve cell performance at the same time. Since about 30 % of the module cost is a result of substrate cost, thin solar cells are of economic advantage than their thicker counterparts. This lead to the research for development of thin heterojunction solar cells. For high cell efficiencies and performance, it is important for cells to have a high operating voltage and Voc. Development of heterojunction cells with high Voc required a stable and repeatable baseline process on which further improvements could be made. Therefore a baseline process for heterojunction solar cells was developed and demonstrated as a pilot line at the Solar Power Lab at ASU. All the processes involved in fabrication of cells with the baseline process were optimized to have a stable and repeatable process. The cells produced with the baseline process were 19-20% efficient. The baseline process was further used as a backbone to improve and develop thin cells with even higher Voc. The process recipe was optimized with an aim to explore the limits of Voc that could be achieved with this structure on a much thinner substrate than used for the baseline process. A record Voc greater than 760mV was recorded at SPL using Suns-Voc tester on a 50 microns thick heterojunction cell without metallization. Furthermore, Voc of 754.2 mV was measured on a 50 microns thick cell with metallization by National Renewable Energy Laboratory (NREL), which is a record for Voc for heterojunction cells with metallization. High Voc corresponds to high cell efficiency and therefore, higher module voltage and power with using the same number of cells as compared to other c-Si solar cells.
ContributorsMonga, Tanmay (Author) / Bowden, Stuart (Thesis advisor) / Dauksher, William (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2015
Description
This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library contains a collection of useful functions and detailed examples that

This comprehensive library of photovoltaic functions (PVSimLib) is an attempt to help the photovoltaics community to solve one of its long-lasting problems, the lack of a simple, flexible and comprehensive tool that can be used for photovoltaic calculations. The library contains a collection of useful functions and detailed examples that will show the user how to take advantage of the resources present in this library. The results will show how in combination with other Python libraries (Matplotlib), this library becomes a powerful tool for anyone involved in solar power.
ContributorsReguera, Pedro (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2018
154196-Thumbnail Image.png
Description
In order to ensure higher penetration of photovoltaics in the energy market and have an immediate impact in addressing the challenges of energy crisis and climate change, this thesis research focusses on improving the efficiency of the diffused junction silicon solar cells of an already existing line with established processes.

In order to ensure higher penetration of photovoltaics in the energy market and have an immediate impact in addressing the challenges of energy crisis and climate change, this thesis research focusses on improving the efficiency of the diffused junction silicon solar cells of an already existing line with established processes. Thus, the baseline processes are first made stable and demonstrated as a pilot line at the Solar Power Lab at ASU, to be used as a backbone on which further improvements could be made. Of the several factors that affect the solar cell efficiency, improvement of short circuit current by reduction of the shading losses is chosen to achieve the improvement.

The shading losses are reduced by lowering the finger width of the solar cell .This reduction of the front metal coverage causes an increase in the series resistance, thereby adversely affecting the fill factor and hence efficiency. To overcome this problem, double printing method is explored to be used for front grid metallization. Before its implementation, it is important to accurately understand the effect of reducing the finger width on the series resistance. Hence, series resistance models are modified from the existing generic model and developed to capture the effects of screen-printing. To have minimum power loss in the solar cell, finger spacing is optimized for the front grid design with each of the finger widths chosen, which are narrower than the baseline finger width. A commercial software package called Griddler is used to predict the results of the model developed to capture effects of screen-printing.

The process for double printing with accurate alignment for finger width down to 50um is developed. After designing the screens for optimized front grid, solar cells are fabricated using both single printing and double printing methods and an improvement of efficiency from 17.2% to 17.8%, with peak efficiency of 18% is demonstrated.
ContributorsSrinivasa, Apoorva (Author) / Bowden, Stuart (Thesis advisor) / Tracy, Clarence (Committee member) / Dauksher, Bill (Committee member) / Arizona State University (Publisher)
Created2015
154722-Thumbnail Image.png
Description
This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s

This thesis examines using thermal energy storage as a demand side management tool for air-conditioning loads with the goal of increasing photovoltaic penetration. It uses Arizona State University (ASU) as a case study. The analysis is completed with a modeling approach using typical meteorological year (TMY) data, along with ASU’s historical load data. Sustainability, greenhouse gas emissions, carbon neutrality, and photovoltaic (PV) penetration are all considered along with potential economic impacts.

By extrapolating the air-conditioning load profile from the existing data sets, it can be ensured that cooling demands can be met at all times under the new management method. Using this cooling demand data, it is possible to determine how much energy is required to meet these needs. Then, modeling the PV arrays, the thermal energy storage (TES), and the chillers, the maximum PV penetration in the future state can be determined.

Using this approach, it has been determined that ASU can increase their solar PV resources by a factor of 3.460, which would amount to a PV penetration of approximately 48%.
ContributorsRouthier, Alexander F (Author) / Honsberg, Christiana (Thesis advisor) / Fraser, Matthew (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2016