Matching Items (7)
Filtering by

Clear all filters

Description
The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for

The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for a wireless system (using a 802.11a/b/g
and cellular protocols as a model) that can scale to support thousands of users simultaneously (say in a large office building, super chain store, etc.) or in a small, but very dense communication RF region. Elements of communication between a base station and a Mobile Station will be analyzed statistically to demonstrate higher throughput, fewer collisions and lower bit error rates (BER) with the given bandwidth defined by the 802.11n wireless specification (use of MIMO channels will be evaluated). A new network nodal paradigm will be presented. Alternative link layer communication techniques will be recommended and analyzed for the affect on mobile devices. The analysis will describe how the algorithms used by state machines implemented on Mobile Stations and Wi-Fi client devices will be influenced by new base station transmission behavior. New hardware design techniques that can be used to optimize this architecture as well as hardware design principles in regard to the minimal hardware functional blocks required to support such a system design will be described. Hardware design and verification simulation techniques to prove the hardware design will accommodate an acceptable level of performance to meet the strict timing as it relates to this new system architecture.
ContributorsJames, Frank (Author) / Reisslein, Martin (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
153081-Thumbnail Image.png
Description
LTE (Long Term Evolution) represents an emerging technology that will change how service providers backhaul user traffic to their infrastructure over IP networks. To support growing mobile bandwidth demand, an EPON backhaul infrastructure will make possible realtime high bandwidth applications. LTE backhaul planning and deployment scenarios are important

LTE (Long Term Evolution) represents an emerging technology that will change how service providers backhaul user traffic to their infrastructure over IP networks. To support growing mobile bandwidth demand, an EPON backhaul infrastructure will make possible realtime high bandwidth applications. LTE backhaul planning and deployment scenarios are important factors to network success. In this thesis, we are going to study the effect of LTE backhaul on Optical network, in an attempt to interoperate Fiber and Wireless networks. This project is based on traffic forecast for the LTE networks. Traffic models are studied and gathered from literature to reflect applications accurately. Careful capacity planning of the mobile backhaul is going to bring a better experience for LTE users, in terms of bit rates and latency they can expect, while allowing the network operators to spend their funds effectively.
ContributorsAlharbi, Ziyad (Author) / Reisslein, Martin (Thesis advisor) / Zhang, Yanchao (Committee member) / McGarry, Michael (Committee member) / Arizona State University (Publisher)
Created2014
151059-Thumbnail Image.png
Description
With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no different for Passive Optical Networks(PON), which are networks based on fiber optics in the physical layer of TCP/IP stack or

With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no different for Passive Optical Networks(PON), which are networks based on fiber optics in the physical layer of TCP/IP stack or OSI model, which in turn increases the bandwidth in the upper layers. The work in this thesis covers general description of basic DBA Schemes and mathematical derivations that have been established in research. We introduce a Novel Survey Topology that classifes DBA schemes based on their functionality. The novel perspective of classification will be useful in determining which scheme will best suit consumer's needs. We classify DBA as Direct, Intelligent and Predictive back on its computation method and we are able to qualitatively describe their delay and throughput bounds. Also we describe a recently developed DBA Scheme, Multi-thread polling(MTP) used in LRPON and describes the different viewpoints and issues and consequently introduce a novel technique Parallel Polling that overcomes most of issues faced in MTP and that promises better delay performance for LRPON.
ContributorsMercian, Anu (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2012
150839-Thumbnail Image.png
Description
Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device

Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device uses Bluetooth to communicate with the smartphone, providing mobility to the user. Since the device is small and hand-held, the user can put his smartphone in his pocket, connected to the device in his hand and can move anywhere with it. The data processing performed in the applications is verified against standard off the shelf software, the results of the tests are discussed in this document. The user-interface is very simple and doesn't require many inputs from the user other than during the initial setting when they have to enter their personal information for the records. The m-health application can be used by doctors as well as by patients. The response of the application is very quick and hence the patients need not wait for a long time to see the results. The environmental monitoring device has a real-time plot displayed on the screen of the smartphone showing concentrations of total volatile organic compounds and airborne particle count in the environment at the location of the device. The programming was done with Microsoft Visual Studio and was written on VB.NET platform. On the applications, the smartphone receives data as raw binary bytes from the device via Bluetooth and this data is processed to obtain the final result. The final result is the concentration of Nitric Oxide in ppb in the Asthma Analyzer device. In the environmental monitoring device, the final result is the concentration of total Volatile Organic Compounds and the count of airborne Particles.
ContributorsGanesan, Srisivapriya (Author) / Tao, Nongjian (Thesis advisor) / Zhang, Yanchao (Committee member) / Tsow, Tsing (Committee member) / Arizona State University (Publisher)
Created2012
150639-Thumbnail Image.png
Description
A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is

A new type of Ethernet switch based on the PCI Express switching fabric is being presented. The switch leverages PCI Express peer-to-peer communication protocol to implement high performance Ethernet packet switching. The advantages and challenges of using the PCI Express as the switching fabric are addressed. The PCI Express is a high-speed short-distance communication protocol largely used in motherboard-level interconnects. The total bandwidth of a PCI Express 3.0 link can reach as high as 256 gigabit per second (Gb/s) per 16 lanes. Concerns for PCI Express such as buffer speed, address mapping, Quality of Service and power consumption need to be considered. An overview of the proposed Ethernet switch architecture is presented. The switch consists of a PCI Express switching fabric and multiple adaptor cards. The thesis reviews the peer-to-peer (P2P) communication protocol used in the switching fabric. The thesis also discusses the packet routing procedure in P2P protocol in detail. The Ethernet switch utilizes a portion of the Quality of Service provided with PCI Express to ensure guaranteed transmission. The thesis presents a method of adapting Ethernet packets over the PCI Express transaction layer packets. The adaptor card is divided into the following two parts: receive path and transmit path. The commercial off-the-shelf Media Access Control (MAC) core and PCI Express endpoint core are used in the adaptor. The output address lookup logic block is responsible for converting Ethernet MAC addresses to PCI Express port addresses. Different methods of providing Quality of Service in the adaptor card include classification, flow control, and error detection with the cooperation of the PCI Express switch are discussed. The adaptor logic is implemented in Verilog hardware description language. Functional simulation is conducted in ModelSim. The simulation results show that the Ethernet packets are able to be converted to the corresponding PCI Express transaction layer packets based on their destination MAC addresses. The transaction layer packets are then converted back to Ethernet packets. A functionally correct FPGA logic of the adaptor card is ready for implementation on real FPGA development board.
ContributorsChen, Caiyi (Author) / Hui, Joseph (Thesis advisor) / Reisslein, Martin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2012
155847-Thumbnail Image.png
Description
This thesis proposes a policy to control the heating, ventilation and air conditioning (HVAC) systems in an industrial building. The policy designed in this thesis aims to minimize the electricity cost of a building while maintaining human comfort. Occupancy prediction and building thermal dynamics are utilized in the policy. Because

This thesis proposes a policy to control the heating, ventilation and air conditioning (HVAC) systems in an industrial building. The policy designed in this thesis aims to minimize the electricity cost of a building while maintaining human comfort. Occupancy prediction and building thermal dynamics are utilized in the policy. Because every building has a power constraint, the policy balances different rooms' electricity needs and electricity price to allocate AC unit power for each room. In particular, energy costs are saved by reducing the system's power for times when the occupancy is low. Human comfort is preserved by restricting the temperature to a given range when the room occupancy is above a preset threshold. This thesis proposes a greedy policy, with provably good performance bound, to reduce costs for a building while maintaining overall comfort levels. The approximation ratio of the policy is developed and analyzed, demonstrating the effectiveness of this approach as compared to an ideal optimal policy.
ContributorsLi, Yangjun (Author) / Zhang, Junshan (Thesis advisor) / Zhang, Yanchao (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2017
171717-Thumbnail Image.png
Description
Although the increasing penetration of electric vehicles (EVs) has reduced the emissionof the greenhouse gas caused by vehicles, it would lead to serious congestion on-road and in charging stations. Strategic coordination of EV charging would benefit the transportation system. However, it is difficult to model a congestion game, which includes choosing charging routes

Although the increasing penetration of electric vehicles (EVs) has reduced the emissionof the greenhouse gas caused by vehicles, it would lead to serious congestion on-road and in charging stations. Strategic coordination of EV charging would benefit the transportation system. However, it is difficult to model a congestion game, which includes choosing charging routes and stations. Furthermore, conventional algorithms cannot balance System Optimization and User Equilibrium, which can cause a huge waste to the whole society. To solve these problems, this paper shows (1) a congestion game setup to optimize and reveal the relationship between EV users, (2) using ε – Nash Equilibrium to reduce the inefficient impact from the self-minded the behavior of the EV users, and (3) finding the relatively optimal solution to approach Pareto-Optimal solution. The proposed method can reduce more total EVs charging time and most EV users’ charging time than existing methods. Numerical simulations demonstrate the advantages of the new method compared to the current methods.
ContributorsYu, Hao (Author) / Weng, Yang (Thesis advisor) / Yu, Hongbin (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2022