Matching Items (8)
Filtering by

Clear all filters

152311-Thumbnail Image.png
Description
Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed.

Mobile robots are used in a broad range of application areas; e.g. search and rescue, reconnaissance, exploration, etc. Given the increasing need for high performance mobile robots, the area has received attention by researchers. In this thesis, critical control and control-relevant design issues for differential drive mobile robots is addressed. Two major themes that have been explored are the use of kinematic models for control design and the use of decentralized proportional plus integral (PI) control. While these topics have received much attention, there still remain critical questions which have not been rigorously addressed. In this thesis, answers to the following critical questions are provided: When is 1. a kinematic model sufficient for control design? 2. coupled dynamics essential? 3. a decentralized PI inner loop velocity controller sufficient? 4. centralized multiple-input multiple-output (MIMO) control essential? and how can one design the robot to relax the requirements implied in 1 and 2? In this thesis, the following is shown: 1. The nonlinear kinematic model will suffice for control design when the inner velocity (dynamic) loop is much faster (10X) than the slower outer positioning loop. 2. A dynamic model is essential when the inner velocity (dynamic) loop is less than two times faster than the slower outer positioning loop. 3. A decentralized inner loop PI velocity controller will be sufficient for accomplish- ing high performance control when the required velocity bandwidth is small, rel- ative to the peak dynamic coupling frequency. A rule-of-thumb which depends on the robot aspect ratio is given. 4. A centralized MIMO velocity controller is needed when the required bandwidth is large, relative to the peak dynamic coupling frequency. Here, the analysis in the thesis is sparse making the topic an area for future analytical work. Despite this, it is clearly shown that a centralized MIMO inner loop controller can offer increased performance vis- ́a-vis a decentralized PI controller. 5. Finally, it is shown how the dynamic coupling depends on the robot aspect ratio and how the coupling can be significantly reduced. As such, this can be used to ease the requirements imposed by 2 and 4 above.
ContributorsAnvari, Iman (Author) / Rodriguez, Armando A (Thesis advisor) / Si, Jenni (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
152330-Thumbnail Image.png
Description
This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to

This thesis discusses control and obstacle avoidance for non-holonomic differential drive mobile vehicles. The two important behaviors for the vehicle can be defined as go to goal and obstacle avoidance behavior. This thesis discusses both behaviors in detail. Go to goal behavior is the ability of the mobile vehicle to go from one particular co-ordinate to another. Cruise control, cartesian and posture stabilization problems are discussed as the part of this behavior. Control strategies used for the above three problems are explained in the thesis. Matlab simulations are presented to verify these controllers. Obstacle avoidance behavior ensures that the vehicle doesn't hit object in its path while going towards the goal. Three different techniques for obstacle avoidance which are useful for different kind of obstacles are described in the thesis. Matlab simulations are presented to show and discuss the three techniques. The controls discussed for the cartesian and posture stabilization were implemented on a low cost miniature vehicle to verify the results practically. The vehicle is described in the thesis in detail. The practical results are compared with the simulations. Hardware and matlab codes have been provided as a reference for the reader.
ContributorsChopra, Dhruv (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
152341-Thumbnail Image.png
Description
The problem of systematically designing a control system continues to remain a subject of intense research. In this thesis, a very powerful control system design environment for Linear Time-Invariant (LTI) Multiple-Input Multiple-Output (MIMO) plants is presented. The environment has been designed to address a broad set of closed loop metrics

The problem of systematically designing a control system continues to remain a subject of intense research. In this thesis, a very powerful control system design environment for Linear Time-Invariant (LTI) Multiple-Input Multiple-Output (MIMO) plants is presented. The environment has been designed to address a broad set of closed loop metrics and constraints; e.g. weighted H-infinity closed loop performance subject to closed loop frequency and/or time domain constraints (e.g. peak frequency response, peak overshoot, peak controls, etc.). The general problem considered - a generalized weighted mixed-sensitivity problem subject to constraints - permits designers to directly address and tradeoff multivariable properties at distinct loop breaking points; e.g. at plant outputs and at plant inputs. As such, the environment is particularly powerful for (poorly conditioned) multivariable plants. The Youla parameterization is used to parameterize the set of all stabilizing LTI proper controllers. This is used to convexify the general problem being addressed. Several bases are used to turn the resulting infinite-dimensional problem into a finite-dimensional problem for which there exist many efficient convex optimization algorithms. A simple cutting plane algorithm is used within the environment. Academic and physical examples are presented to illustrate the utility of the environment.
ContributorsPuttannaiah, Karan (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos S (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2013
153274-Thumbnail Image.png
Description
Scarcity of potable water is one of the major problems faced in the world today. Majority of this problem can be solved if technology is developed to obtain potable water from brackish or saline water. The present desalination methods face challenges such as high costs in terms of energy consumption

Scarcity of potable water is one of the major problems faced in the world today. Majority of this problem can be solved if technology is developed to obtain potable water from brackish or saline water. The present desalination methods face challenges such as high costs in terms of energy consumption and infrastructure, physical size of the system, requirement of membrane and high pressure systems and hence have been facing various issues in implementation of the same.

This research provides a new low pressure, low energy, portable method to desalinate water without the need for separation membranes, heat or chemical reactions. This method is energy efficient, cost effective, compact, environment friendly and suitable for portable desalination units. This technology, named as Polyphase Alternating current Bi-Ionic Propulsion System (PACBIPS) makes use of polyphase alternating current source to create a gradient in salt concentration. The gradient in salt concentration is achieved due to the creation of a traveling wave which attracts anions on its positive peak (crests) and cations on its negative peak (troughs) and travels along a central pipe thereby flushing the ions down.

Another method of PACBIPS is based on Helmholtz capacitor which involves the formation of an electric double layer between the electrode and electrolyte consisting of equal and opposite ions which can be approximated as a capacitor. Charging and discharging this capacitor helps adsorb the ions onto a carbon electrode which has high surface area and electrical conductivity. This desalinates seawater and provides pure water. Mathematical modeling, analysis and implementation of the two methods have

been presented in this work. The effects of zeta potential, electric field screening, electric mobility on desalination have been discussed.
ContributorsKrishna Kashyap, Suhas (Author) / Hui, Joseph (Thesis advisor) / Ayyanar, Raja (Committee member) / Rodriguez, Armando A (Committee member) / Arizona State University (Publisher)
Created2014
156523-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses various perception and control problems in autonomous aerial robotics. The objective of this thesis is to motivate the use of perspective cues in single images for the planning and control of quadrotors in indoor environments. In addition to providing empirical evidence for the abundance of such cues in indoor environments, the usefulness of these perspective cues is demonstrated by designing a control algorithm for navigating a quadrotor in indoor corridors. An Extended Kalman Filter (EKF), implemented on top of the vision algorithm, serves to improve the robustness of the algorithm to changing illumination.

In this thesis, vanishing points are the perspective cues used to control and navigate a quadrotor in an indoor corridor. Indoor corridors are an abundant source of parallel lines. As a consequence of perspective projection, parallel lines in the real world, that are not parallel to the plane of the camera, intersect at a point in the image. This point is called the vanishing point of the image. The vanishing point is sensitive to the lateral motion of the camera and hence the quadrotor. By tracking the position of the vanishing point in every image frame, the quadrotor can navigate along the center of the corridor.

Experiments are conducted using the Augmented Reality (AR) Drone 2.0. The drone is equipped with the following componenets: (1) 720p forward facing camera for vanishing point detection, (2) 240p downward facing camera, (3) Inertial Measurement Unit (IMU) for attitude control , (4) Ultrasonic sensor for estimating altitude, (5) On-board 1 GHz Processor for processing low level commands. The reliability of the vision algorithm is presented by flying the drone in indoor corridors.
ContributorsRavishankar, Nikhilesh (Author) / Rodriguez, Armando A (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Berman, Spring M (Committee member) / Arizona State University (Publisher)
Created2018
154891-Thumbnail Image.png
Description
With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a fully integrated missile-target engagement environment. A MATLAB based application is developed with 3D animation capabilities to study missile-target engagement and

With recent advances in missile and hypersonic vehicle technologies, the need for being able to accurately simulate missile-target engagements has never been greater. Within this research, we examine a fully integrated missile-target engagement environment. A MATLAB based application is developed with 3D animation capabilities to study missile-target engagement and visualize them. The high fidelity environment is used to validate miss distance analysis with the results presented in relevant GNC textbooks and to examine how the kill zone varies with critical engagement parameters; e.g. initial engagement altitude, missile Mach, and missile maximum acceleration. A ray-based binary search algorithm is used to estimate the kill zone region; i.e. the set of initial target starting conditions such that it will be "killed". The results show what is expected. The kill zone increases with larger initial missile Mach and maximum acceleration & decreases with higher engagement altitude and higher target Mach. The environment is based on (1) a 6DOF bank-to-turn (BTT) missile, (2) a full aerodynamic-stability derivative look up tables ranging over Mach number, angle of attack and sideslip angle (3) a standard atmosphere model, (4) actuator dynamics for each of the four cruciform fins, (5) seeker dynamics, (6) a nonlinear autopilot, (7) a guidance system with three guidance algorithms (i.e. PNG, optimal, differential game theory), (8) a 3DOF target model with three maneuverability models (i.e. constant speed, Shelton Turn & Climb, Riggs-Vergaz Turn & Dive). Each of the subsystems are described within the research. The environment contains linearization, model analysis and control design features. A gain scheduled nonlinear BTT missile autopilot is presented here. Autopilot got sluggish as missile altitude increased and got aggressive as missile mach increased. In short, the environment is shown to be a very powerful tool for conducting missile-target engagement research - a research that could address multiple missiles and advanced targets.
ContributorsRenganathan, Venkatraman (Author) / Rodriguez, Armando A (Thesis advisor) / Artemiadis, Panagiotis (Committee member) / Berman, Spring M (Committee member) / Arizona State University (Publisher)
Created2016
155007-Thumbnail Image.png
Description
Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design and control objectives for ground vehicles. One central objective is formation of multi-robot systems, particularly, longitudinal control of platoon of ground vehicle. In this

Toward the ambitious long-term goal of a fleet of cooperating Flexible Autonomous Machines operating in an uncertain Environment (FAME), this thesis addresses several critical modeling, design and control objectives for ground vehicles. One central objective is formation of multi-robot systems, particularly, longitudinal control of platoon of ground vehicle. In this thesis, the author use low-cost ground robot platform shows that with leader information, the platoon controller can have better performance than one without it.

Based on measurement from multiple vehicles, motor-wheel system dynamic model considering gearbox transmission has been developed. Noticing the difference between on ground vehicle behavior and off-ground vehicle behavior, on ground vehicle-motor model considering friction and battery internal resistance has been put forward and experimentally validated by multiple same type of vehicles. Then simplified longitudinal platoon model based on on-ground test were used as basis for platoon controller design.

Hardware and software has been updated to facilitate the goal of control a platoon of ground vehicles. Based on previous work of Lin on low-cost differential-drive

(DD) RC vehicles called Thunder Tumbler, new robot platform named Enhanced

Thunder Tumbler (ETT 2) has been developed with following improvement: (1) optical wheel-encoder which has 2.5 times higher resolution than magnetic based one,

(2) BNO055 IMU can read out orientation directly that LSM9DS0 IMU could not,

(3) TL-WN722N Wifi USB Adapter with external antenna which can support more stable communication compared to Edimax adapter, (4) duplex serial communication between Pi and Arduino than single direction communication from Pi to Arduino, (5) inter-vehicle communication based on UDP protocol.

All demonstrations presented using ETT vehicles. The following summarizes key hardware demonstrations: (1) cruise-control along line, (2) longitudinal platoon control based on local information (ultrasonic sensor) without inter-vehicle communication, (3) longitudinal platoon control based on local information (ultrasonic sensor) and leader information (speed). Hardware data/video is compared with, and corroborated by, model-based simulations. Platoon simulation and hardware data reveals that with necessary information from platoon leader, the control effort will be reduced and space deviation be diminished among propagation along the fleet of vehicles. In short, many capabilities that are critical for reaching the longer-term FAME goal are demonstrated.
ContributorsLi, Zhichao (Author) / Rodriguez, Armando A (Thesis advisor) / Artemiadis, Panagiotis K (Committee member) / Berman, Spring M (Committee member) / Arizona State University (Publisher)
Created2016
161260-Thumbnail Image.png
Description
Over the past few decades, there is an increase in demand for various ground robot applications such as warehouse management, surveillance, mapping, infrastructure inspection, etc. This steady increase in demand has led to a significant rise in the nonholonomic differential drive vehicles (DDV) research. Albeit extensive work has been done

Over the past few decades, there is an increase in demand for various ground robot applications such as warehouse management, surveillance, mapping, infrastructure inspection, etc. This steady increase in demand has led to a significant rise in the nonholonomic differential drive vehicles (DDV) research. Albeit extensive work has been done in developing various control laws for trajectory tracking, point stabilization, formation control, etc., there are still problems and critical questions in regards to design, modeling, and control of DDV’s - that need to be adequately addressed. In this thesis, three different dynamical models are considered that are formed by varying the input/output parameters of the DDV model. These models are analyzed to understand their stability, bandwidth, input-output coupling, and control design properties. Furthermore, a systematic approach has been presented to show the impact of design parameters such as mass, inertia, radius of the wheels, and center of gravity location on the dynamic and inner-loop (speed) control design properties. Subsequently, extensive simulation and hardware trade studies have been conductedto quantify the impact of design parameters and modeling variations on the performance of outer-loop cruise and position control (along a curve). In addition to this, detailed guidelines are provided for when a multi-input multi-output (MIMO) control strategy is advisable over a single-input single-output (SISO) control strategy; when a less stable plant is preferable over a more stable one in order to accommodate performance specifications. Additionally, a multi-robot trajectory tracking implementation based on receding horizon optimization approach is also presented. In most of the optimization-based trajectory tracking approaches found in the literature, only the constraints imposed by the kinematic model are incorporated into the problem. This thesis elaborates the fundamental problem associated with these methods and presents a systematic approach to understand and quantify when kinematic model based constraints are sufficient and when dynamic model-based constraints are necessary to obtain good tracking properties. Detailed instructions are given for designing and building the DDV based on performance specifications, and also, an open-source platform capable of handling high-speed multi-robot research is developed in C++.
ContributorsManne, Sai Sravan (Author) / Rodriguez, Armando A (Thesis advisor) / Si, Jennie (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021