Matching Items (6)
Filtering by

Clear all filters

150375-Thumbnail Image.png
Description
Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for

Current sensing ability is one of the most desirable features of contemporary current or voltage mode controlled DC-DC converters. Current sensing can be used for over load protection, multi-stage converter load balancing, current-mode control, multi-phase converter current-sharing, load independent control, power efficiency improvement etc. There are handful existing approaches for current sensing such as external resistor sensing, triode mode current mirroring, observer sensing, Hall-Effect sensors, transformers, DC Resistance (DCR) sensing, Gm-C filter sensing etc. However, each method has one or more issues that prevent them from being successfully applied in DC-DC converter, e.g. low accuracy, discontinuous sensing nature, high sensitivity to switching noise, high cost, requirement of known external power filter components, bulky size, etc. In this dissertation, an offset-independent inductor Built-In Self Test (BIST) architecture is proposed which is able to measure the inductor inductance and DCR. The measured DCR enables the proposed continuous, lossless, average current sensing scheme. A digital Voltage Mode Control (VMC) DC-DC buck converter with the inductor BIST and current sensing architecture is designed, fabricated, and experimentally tested. The average measurement errors for inductance, DCR and current sensing are 2.1%, 3.6%, and 1.5% respectively. For the 3.5mm by 3.5mm die area, inductor BIST and current sensing circuits including related pins only consume 5.2% of the die area. BIST mode draws 40mA current for a maximum time period of 200us upon start-up and the continuous current sensing consumes about 400uA quiescent current. This buck converter utilizes an adaptive compensator. It could update compensator internally so that the overall system has a proper loop response for large range inductance and load current. Next, a digital Average Current Mode Control (ACMC) DC-DC buck converter with the proposed average current sensing circuits is designed and tested. To reduce chip area and power consumption, a 9 bits hybrid Digital Pulse Width Modulator (DPWM) which uses a Mixed-mode DLL (MDLL) is also proposed. The DC-DC converter has a maximum of 12V input, 1-11 V output range, and a maximum of 3W output power. The maximum error of one least significant bit (LSB) delay of the proposed DPWM is less than 1%.
ContributorsLiu, Tao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ozev, Sule (Committee member) / Vermeire, Bert (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2011
150106-Thumbnail Image.png
Description
Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for

Optical receivers have many different uses covering simple infrared receivers, high speed fiber optic communication and light based instrumentation. All of them have an optical receiver that converts photons to current followed by a transimpedance amplifier to convert the current to a useful voltage. Different systems create different requirements for each receiver. High speed digital communication require high throughput with enough sensitivity to keep the bit error rate low. Instrumentation receivers have a lower bandwidth, but higher gain and sensitivity requirements. In this thesis an optical receiver for use in instrumentation in presented. It is an entirely monolithic design with the photodiodes on the same substrate as the CMOS circuitry. This allows for it to be built into a focal-plane array, but it places some restriction on the area. It is also designed for in-situ testing and must be able to cancel any low frequency noise caused by ambient light. The area restrictions prohibit the use of a DC blocking capacitor to reject the low frequency noise. In place a servo loop was wrapped around the system to reject any DC offset. A modified Cherry-Hooper architecture was used for the transimpedance amplifier. This provides the flexibility to create an amplifier with high gain and wide bandwidth that is independent of the input capacitance. The downside is the increased complexity of the design makes stability paramount to the design. Another drawback is the high noise associated with low input impedance that decouples the input capacitance from the bandwidth. This problem is compounded by the servo loop feed which leaves the output noise of some amplifiers directly referred to the input. An in depth analysis of each circuit block's noise contribution is presented.
ContributorsLaFevre, Kyle (Author) / Bakkaloglu, Bertan (Thesis advisor) / Barnaby, Hugh (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2011
150458-Thumbnail Image.png
Description
During the past decade, different kinds of fancy functions are developed in portable electronic devices. This trend triggers the research of how to enhance battery lifetime to meet the requirement of fast growing demand of power in portable devices. DC-DC converter is the connection configuration between the battery and the

During the past decade, different kinds of fancy functions are developed in portable electronic devices. This trend triggers the research of how to enhance battery lifetime to meet the requirement of fast growing demand of power in portable devices. DC-DC converter is the connection configuration between the battery and the functional circuitry. A good design of DC-DC converter will maximize the power efficiency and stabilize the power supply of following stages. As the representative of the DC-DC converter, Buck converter, which is a step down DC-DC converter that the output voltage level is smaller than the input voltage level, is the best-fit sample to start with. Digital control for DC-DC converters reduces noise sensitivity and enhances process, voltage and temperature (PVT) tolerance compared with analog control method. Also it will reduce the chip area and cost correspondingly. In battery-friendly perspective, current mode control has its advantage in over-current protection and parallel current sharing, which can form different structures to extend battery lifetime. In the thesis, the method to implement digitally average current mode control is introduced; including the FPGA based digital controller design flow. Based on the behavioral model of the close loop Buck converter with digital current control, the first FPGA based average current mode controller is burned into board and tested. With the analysis, the design metric of average current mode control is provided in the study. This will be the guideline of the parallel structure of future research.
ContributorsFu, Chao (Author) / Bakkaloglu, Bertan (Thesis advisor) / Cao, Yu (Committee member) / Vermeire, Bert (Committee member) / Arizona State University (Publisher)
Created2011
149504-Thumbnail Image.png
Description
The thesis focuses on cost-efficient integration of the electro-chemical residue sensor (ECRS), a novel sensor developed for the in situ and real-time measurement of the residual impurities left on the wafer surface and in the fine structures of patterned wafers during typical rinse processes, and wireless transponder circuitry that is

The thesis focuses on cost-efficient integration of the electro-chemical residue sensor (ECRS), a novel sensor developed for the in situ and real-time measurement of the residual impurities left on the wafer surface and in the fine structures of patterned wafers during typical rinse processes, and wireless transponder circuitry that is based on RFID technology. The proposed technology uses only the NMOS FD-SOI transistors with amorphous silicon as active material with silicon nitride as a gate dielectric. The proposed transistor was simulated under the SILVACO ATLAS Simulation Framework. A parametric study was performed to study the impact of different gate lengths (6 μm to 56 μm), electron motilities (0.1 cm2/Vs to 1 cm2/Vs), gate dielectric (SiO2 and SiNx) and active materials (a-Si and poly-Si) specifications. Level-1 models, that are accurate enough to acquire insight into the circuit behavior and perform preliminary design, were successfully constructed by analyzing drain current and gate to node capacitance characteristics against drain to source and gate to source voltages. Using the model corresponding to SiNx as gate dielectric, a-Si:H as active material with electron mobility equal to 0.4 cm2/V-sec, an operational amplifier was designed and was tested in unity gain configuration at modest load-frequency specifications.
ContributorsPandit, Vedhas (Author) / Vermeire, Bert (Thesis advisor) / Barnaby, Hugh (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2010
149546-Thumbnail Image.png
Description
In this work, a high resolution analog-to-digital converter (ADC) for use in harsh environments is presented. The ADC is implemented in bulk CMOS technology and is intended for space exploration, mining and automotive applications with a range of temperature variation in excess of 250°C. A continuous time (CT) sigma delta

In this work, a high resolution analog-to-digital converter (ADC) for use in harsh environments is presented. The ADC is implemented in bulk CMOS technology and is intended for space exploration, mining and automotive applications with a range of temperature variation in excess of 250°C. A continuous time (CT) sigma delta modulator employing a cascade of integrators with feed forward (CIFF) architecture in a single feedback loop topology is used for implementing the ADC. In order to enable operation in the intended application environments, an RC time constant tuning engine is proposed. The tuning engine is used to maintain linearity of a 10 ksps 20 bit continuous time sigma delta ADC designed for spectroscopy applications in space. The proposed circuit which is based on master slave architecture automatically selects on chip resistors to control RC time constants to an accuracy range of ±5% to ±1%. The tuning range, tuning accuracy and circuit non-idealities are analyzed theoretically. To verify the concept, an experimental chip was fabricated in JAZZ .18µm 1.8V CMOS technology. The tuning engine which occupies an area of .065mm2; consists of only an integrator, a comparator and a shift register. It can achieve a signal to noise and distortion ratio (SNDR) greater than 120dB over a ±40% tuning range.
ContributorsAnabtawi, Nijad (Author) / Barnaby, Hugh (Thesis advisor) / Vermeire, Bert (Committee member) / Gildenblat, Gennady (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2011
149615-Thumbnail Image.png
Description
This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas

This thesis presents a gas sensor readout IC for amperometric and conductometric electrochemical sensors. The Analog Front-End (AFE) readout circuit enables tracking long term exposure to hazardous gas fumes in diesel and gasoline equipments, which may be correlated to diseases. Thus, the detection and discrimination of gases using microelectronic gas sensor system is required. This thesis describes the research, development, implementation and test of a small and portable based prototype platform for chemical gas sensors to enable a low-power and low noise gas detection system. The AFE reads out the outputs of eight conductometric sensor array and eight amperometric sensor arrays. The IC consists of a low noise potentiostat, and associated 9bit current-steering DAC for sensor stimulus, followed by the first order nested chopped £U£G ADC. The conductometric sensor uses a current driven approach for extracting conductance of the sensor depending on gas concentration. The amperometric sensor uses a potentiostat to apply constant voltage to the sensors and an I/V converter to measure current out of the sensor. The core area for the AFE is 2.65x0.95 mm2. The proposed system achieves 91 dB SNR at 1.32 mW quiescent power consumption per channel. With digital offset storage and nested chopping, the readout chain achieves 500 fÝV input referred offset.
ContributorsKim, Hyun-Tae (Author) / Bakkaloglu, Bertan (Thesis advisor) / Vermeire, Bert (Committee member) / Spanias, Andreas (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2011