Matching Items (2)
Filtering by

Clear all filters

153902-Thumbnail Image.png
Description
The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells

The aim of this thesis research is the development of thin silicon heterojunction solar cells with high open circuit voltage (Voc). Heterojunction solar cells are higher in efficiency than diffused junction c-Si solar cells, and they are less vulnerable to light degradation. Furthermore, the low temperature processing of heterojunction cells favour a decrease in production costs and improve cell performance at the same time. Since about 30 % of the module cost is a result of substrate cost, thin solar cells are of economic advantage than their thicker counterparts. This lead to the research for development of thin heterojunction solar cells. For high cell efficiencies and performance, it is important for cells to have a high operating voltage and Voc. Development of heterojunction cells with high Voc required a stable and repeatable baseline process on which further improvements could be made. Therefore a baseline process for heterojunction solar cells was developed and demonstrated as a pilot line at the Solar Power Lab at ASU. All the processes involved in fabrication of cells with the baseline process were optimized to have a stable and repeatable process. The cells produced with the baseline process were 19-20% efficient. The baseline process was further used as a backbone to improve and develop thin cells with even higher Voc. The process recipe was optimized with an aim to explore the limits of Voc that could be achieved with this structure on a much thinner substrate than used for the baseline process. A record Voc greater than 760mV was recorded at SPL using Suns-Voc tester on a 50 microns thick heterojunction cell without metallization. Furthermore, Voc of 754.2 mV was measured on a 50 microns thick cell with metallization by National Renewable Energy Laboratory (NREL), which is a record for Voc for heterojunction cells with metallization. High Voc corresponds to high cell efficiency and therefore, higher module voltage and power with using the same number of cells as compared to other c-Si solar cells.
ContributorsMonga, Tanmay (Author) / Bowden, Stuart (Thesis advisor) / Dauksher, William (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2015
Description
This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of

This is a lectures series on photovoltaics. As the need for electrical energy rises, mankind has struggled to meet its need in a reliable lasting way. Throughout this struggle, solar energy has come to the foreground as a complete solution. However, it has many drawbacks and needs a lot of development. In addition, the general public is unaware of how solar energy works, how it is made, and how it stands economically. This series of lectures answering those three questions. After two years doing photovoltaic research, and an undergraduate degree in Electrical Engineering, enough expertise has been acquired present on at a late high-school to early college level. Education is key to improving the popularity of using solar energy and the popularity of investing in photovoltaic research. Solar energy is a viable option to satisfy our energy crisis because the materials it requires can quickly be acquired, and there is enough of material to provide a global solution. In addition, the amount of solar energy that hits the surface of the earth in a day is orders of magnitude more than the amount of energy we require. The main goal of this project is to have an effective accessible tool to teach people about solar. Thus, the lectured will be posted on pveducation.com, YouTube, the Barrett repository, and the QUSST website. The content was acquired in four ways. The first way is reading up on the current papers and journals describing the new developments in photovoltaics. The second part is getting in contact with Stuart Bowden and Bill Daukser at Arizona State University's Solar Power Lab as well as the other faculty associated with the Solar Power Lab. There is quite a bit of novel research going on at their lab, as well as a student run pilot line that is actively building solar cells. The third way is reading about solar device physics using device physics textbooks and the PVEducation website made by Stuart Bowden. The forth way is going into ASU's solar power lab.
ContributorsLeBeau, Edward (Author) / Goryll, Michael (Thesis director) / Bowden, Stuart (Committee member) / Dauksher, William (Committee member) / Barrett, The Honors College (Contributor)
Created2017-05