Matching Items (7)

Filtering by

Clear all filters

133601-Thumbnail Image.png

Can Startle Elicit Sequential Movements in Highly Trained Individuals?

Description

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of

Most daily living tasks consist of pairing a series of sequential movements, e.g., reaching to a cup, grabbing the cup, lifting and returning the cup to your mouth. The process by which we control and mediate the smooth progression of these tasks is not well understood. One method which we can use to further evaluate these motions is known as Startle Evoked Movements (SEM). SEM is an established technique to probe the motor learning and planning processes by detecting muscle activation of the sternocleidomastoid muscles of the neck prior to 120ms after a startling stimulus is presented. If activation of these muscles was detected following a stimulus in the 120ms window, the movement is classified as Startle+ whereas if no sternocleidomastoid activation is detected after a stimulus in the allotted time the movement is considered Startle-. For a movement to be considered SEM, the activation of movements for Startle+ trials must be faster than the activation of Startle- trials. The objective of this study was to evaluate the effect that expertise has on sequential movements as well as determining if startle can distinguish when the consolidation of actions, known as chunking, has occurred. We hypothesized that SEM could distinguish words that were solidified or chunked. Specifically, SEM would be present when expert typists were asked to type a common word but not during uncommon letter combinations. The results from this study indicated that the only word that was susceptible to SEM, where Startle+ trials were initiated faster than Startle-, was an uncommon task "HET" while the common words "AND" and "THE" were not. Additionally, the evaluation of the differences between each keystroke for common and uncommon words showed that Startle was unable to distinguish differences in motor chunking between Startle+ and Startle- trials. Explanations into why these results were observed could be related to hand dominance in expert typists. No proper research has been conducted to evaluate the susceptibility of the non-dominant hand's fingers to SEM, and the results of future studies into this as well as the results from this study can impact our understanding of sequential movements.

Contributors

Agent

Created

Date Created
2018-05

134938-Thumbnail Image.png

Startle can evoke individuated movements of the fingers; implications for neural control

Description

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that

Startle-evoked-movement (SEM), the involuntary release of a planned movement via a startling stimulus, has gained significant attention recently for its ability to probe motor planning as well as enhance movement of the upper extremity following stroke. We recently showed that hand movements are susceptible to SEM. Interestingly, only coordinated movements of the hand (grasp) but not individuated movements of the finger (finger abduction) were susceptible. It was suggested that this resulted from different neural mechanisms involved in each task; however it is possible this was the result of task familiarity. The objective of this study was to evaluate a more familiar individuated finger movement, typing, to determine if this task was susceptible to SEM. We hypothesized that typing movements will be susceptible to SEM in all fingers. These results indicate that individuated movements of the fingers are susceptible to SEM when the task involves a more familiar task, since the electromyogram (EMG) latency is faster in SCM+ trials compared to SCM- trials. However, the middle finger does not show a difference in terms of the keystroke voltage signal, suggesting the middle finger is less susceptible to SEM. Given that SEM is thought to be mediated by the brainstem, specifically the reticulospinal tract, this suggest that the brainstem may play a role in movements of the distal limb when those movements are very familiar, and the independence of each finger might also have a significant on the effect of SEM. Further research includes understanding SEM in fingers in the stroke population. The implications of this research can impact the way upper extremity rehabilitation is delivered.

Contributors

Agent

Created

Date Created
2016-12

134804-Thumbnail Image.png

Startle-evoked movement in multi-jointed, two-dimensional reaching tasks

Description

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown

Previous research has shown that a loud acoustic stimulus can trigger an individual's prepared movement plan. This movement response is referred to as a startle-evoked movement (SEM). SEM has been observed in the stroke survivor population where results have shown that SEM enhances single joint movements that are usually performed with difficulty. While the presence of SEM in the stroke survivor population advances scientific understanding of movement capabilities following a stroke, published studies using the SEM phenomenon only examined one joint. The ability of SEM to generate multi-jointed movements is understudied and consequently limits SEM as a potential therapy tool. In order to apply SEM as a therapy tool however, the biomechanics of the arm in multi-jointed movement planning and execution must be better understood. Thus, the objective of our study was to evaluate if SEM could elicit multi-joint reaching movements that were accurate in an unrestrained, two-dimensional workspace. Data was collected from ten subjects with no previous neck, arm, or brain injury. Each subject performed a reaching task to five Targets that were equally spaced in a semi-circle to create a two-dimensional workspace. The subject reached to each Target following a sequence of two non-startling acoustic stimuli cues: "Get Ready" and "Go". A loud acoustic stimuli was randomly substituted for the "Go" cue. We hypothesized that SEM is accessible and accurate for unrestricted multi-jointed reaching tasks in a functional workspace and is therefore independent of movement direction. Our results found that SEM is possible in all five Target directions. The probability of evoking SEM and the movement kinematics (i.e. total movement time, linear deviation, average velocity) to each Target are not statistically different. Thus, we conclude that SEM is possible in a functional workspace and is not dependent on where arm stability is maximized. Moreover, coordinated preparation and storage of a multi-jointed movement is indeed possible.

Contributors

Agent

Created

Date Created
2016-12

152687-Thumbnail Image.png

Neural dynamics of single units in rat's agranular medial and agranular lateral areas during learning of a directional choice task

Description

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and

Learning by trial-and-error requires retrospective information that whether a past action resulted in a rewarded outcome. Previous outcome in turn may provide information to guide future behavioral adjustment. But the specific contribution of this information to learning a task and the neural representations during the trial-and-error learning process is not well understood. In this dissertation, such learning is analyzed by means of single unit neural recordings in the rats' motor agranular medial (AGm) and agranular lateral (AGl) while the rats learned to perform a directional choice task. Multichannel chronic recordings using implanted microelectrodes in the rat's brain were essential to this study. Also for fundamental scientific investigations in general and for some applications such as brain machine interface, the recorded neural waveforms need to be analyzed first to identify neural action potentials as basic computing units. Prior to analyzing and modeling the recorded neural signals, this dissertation proposes an advanced spike sorting system, the M-Sorter, to extract the action potentials from raw neural waveforms. The M-Sorter shows better or comparable performance compared with two other popular spike sorters under automatic mode. With the sorted action potentials in place, neuronal activity in the AGm and AGl areas in rats during learning of a directional choice task is examined. Systematic analyses suggest that rat's neural activity in AGm and AGl was modulated by previous trial outcomes during learning. Single unit based neural dynamics during task learning are described in detail in the dissertation. Furthermore, the differences in neural modulation between fast and slow learning rats were compared. The results show that the level of neural modulation of previous trial outcome is different in fast and slow learning rats which may in turn suggest an important role of previous trial outcome encoding in learning.

Contributors

Agent

Created

Date Created
2014

152691-Thumbnail Image.png

Exploration of neural coding in rat's agranular medial and agranular lateral cortices during learning of a directional choice task

Description

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory

Animals learn to choose a proper action among alternatives according to the circumstance. Through trial-and-error, animals improve their odds by making correct association between their behavioral choices and external stimuli. While there has been an extensive literature on the theory of learning, it is still unclear how individual neurons and a neural network adapt as learning progresses. In this dissertation, single units in the medial and lateral agranular (AGm and AGl) cortices were recorded as rats learned a directional choice task. The task required the rat to make a left/right side lever press if a light cue appeared on the left/right side of the interface panel. Behavior analysis showed that rat's movement parameters during performance of directional choices became stereotyped very quickly (2-3 days) while learning to solve the directional choice problem took weeks to occur. The entire learning process was further broken down to 3 stages, each having similar number of recording sessions (days). Single unit based firing rate analysis revealed that 1) directional rate modulation was observed in both cortices; 2) the averaged mean rate between left and right trials in the neural ensemble each day did not change significantly among the three learning stages; 3) the rate difference between left and right trials of the ensemble did not change significantly either. Besides, for either left or right trials, the trial-to-trial firing variability of single neurons did not change significantly over the three stages. To explore the spatiotemporal neural pattern of the recorded ensemble, support vector machines (SVMs) were constructed each day to decode the direction of choice in single trials. Improved classification accuracy indicated enhanced discriminability between neural patterns of left and right choices as learning progressed. When using a restricted Boltzmann machine (RBM) model to extract features from neural activity patterns, results further supported the idea that neural firing patterns adapted during the three learning stages to facilitate the neural codes of directional choices. Put together, these findings suggest a spatiotemporal neural coding scheme in a rat AGl and AGm neural ensemble that may be responsible for and contributing to learning the directional choice task.

Contributors

Agent

Created

Date Created
2014

Applications of miniaturized ultrasound powered wireless nerve stimulators for pain management

Description

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer

Peripheral Vascular Disease (PVD) is a debilitating chronic disease of the lower extremities particularly affecting older adults and diabetics. It results in reduction of the blood flow to peripheral tissue and sometimes causing tissue damage such that PVD patients suffer from pain in the lower legs, thigh and buttocks after activities. Electrical neurostimulation based on the "Gate Theory of Pain" is a known to way to reduce pain but current devices to do this are bulky and not well suited to implantation in peripheral tissues. There is also an increased risk associated with surgery which limits the use of these devices. This research has designed and constructed wireless ultrasound powered microstimulators that are much smaller and injectable and so involve less implantation trauma. These devices are small enough to fit through an 18 gauge syringe needle increasing their potential for clinical use. These piezoelectric microdevices convert mechanical energy into electrical energy that then is used to block pain. The design and performance of these miniaturized devices was modeled by computer while constructed devices were evaluated in animal experiments. The devices are capable of producing 500ms pulses with an intensity of 2 mA into a 2 kilo-ohms load. Using the rat as an animal model, a series of experiments were conducted to evaluate the in-vivo performance of the devices.

Contributors

Agent

Created

Date Created
2014

158010-Thumbnail Image.png

Data-Efficient Reinforcement Learning Control of Robotic Lower-Limb Prosthesis With Human in the Loop

Description

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized manually by prosthetists for each individual user in different task

Robotic lower limb prostheses provide new opportunities to help transfemoral amputees regain mobility. However, their application is impeded by that the impedance control parameters need to be tuned and optimized manually by prosthetists for each individual user in different task environments. Reinforcement learning (RL) is capable of automatically learning from interacting with the environment. It becomes a natural candidate to replace human prosthetists to customize the control parameters. However, neither traditional RL approaches nor the popular deep RL approaches are readily suitable for learning with limited number of samples and samples with large variations. This dissertation aims to explore new RL based adaptive solutions that are data-efficient for controlling robotic prostheses.

This dissertation begins by proposing a new flexible policy iteration (FPI) framework. To improve sample efficiency, FPI can utilize either on-policy or off-policy learning strategy, can learn from either online or offline data, and can even adopt exiting knowledge of an external critic. Approximate convergence to Bellman optimal solutions are guaranteed under mild conditions. Simulation studies validated that FPI was data efficient compared to several established RL methods. Furthermore, a simplified version of FPI was implemented to learn from offline data, and then the learned policy was successfully tested for tuning the control parameters online on a human subject.

Next, the dissertation discusses RL control with information transfer (RL-IT), or knowledge-guided RL (KG-RL), which is motivated to benefit from transferring knowledge acquired from one subject to another. To explore its feasibility, knowledge was extracted from data measurements of able-bodied (AB) subjects, and transferred to guide Q-learning control for an amputee in OpenSim simulations. This result again demonstrated that data and time efficiency were improved using previous knowledge.

While the present study is new and promising, there are still many open questions to be addressed in future research. To account for human adaption, the learning control objective function may be designed to incorporate human-prosthesis performance feedback such as symmetry, user comfort level and satisfaction, and user energy consumption. To make the RL based control parameter tuning practical in real life, it should be further developed and tested in different use environments, such as from level ground walking to stair ascending or descending, and from walking to running.

Contributors

Agent

Created

Date Created
2020