Matching Items (2)
Filtering by

Clear all filters

134612-Thumbnail Image.png
Description
We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester of my thesis I worked on getting the second stage to reach below 4K such that it would be cold enough to add a sorption fridge to reach 250mK. Various parts were machined for the cryostat and some tweaks were made to existing pieces. The largest changes were we thinned our stainless steel supports from 2mm to 10mil and we added roughly 6-10 layers of multi-layer insulation to the first and second stages. Our result was that we now reach temperatures of 36K and 2.6K on the first and second stages respectively. Next we added the sorption fridge to the 4K stage by having the 4K stage remachined to allow the sorption fridge to be mounted to the stage. Then I designed a final, two stage, setup for the 1K and 250mK stages that has maximum capabilities of housing a six inch wafer for testing. The design was sent to a machinist, but the parts were unfinished by the end of my thesis, so the parts and stage were not tested. Once the cryostat was fully tested and proven to reach the necessary temperatures, preliminary testing was done on a Microwave Kinetic Inductance Detector (MKID) provided by Stanford. Data was collected on the resonance and quality factor as they shifted with final stage temperature (5K to 285mK) and with input power (60dB to 15dB). The data was analyzed and the results agreed within expectations, as the resonant frequency and quality factor shifted down with increased temperature on the MKID. Finally, a noise characterization setup was designed to test the noise of devices, but was not fully implemented.
ContributorsAbers, Paul (Author) / Mauskopf, Phil (Thesis director) / Groppi, Chris (Committee member) / Department of Physics (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
164633-Thumbnail Image.png
Description
The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of

The Compact X-ray Light Source is an x-ray source at ASU that allows scientists to study the structures and dynamics of matter on an atomic scale. The radio frequency system that provides the power to accelerate electrons in the Compact X-ray Light Source must operate with a high degree of precision. This thesis measures the precision with which that system performs.
ContributorsBabic, Gregory (Author) / Graves, William (Thesis director) / Kitchen, Jennifer (Committee member) / Holl, Mark (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor) / Department of Physics (Contributor)
Created2022-05