Matching Items (15)
Filtering by

Clear all filters

137463-Thumbnail Image.png
Description
A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project

A hybrid PV/T module was built, consisting of a thermal liquid heating system and a photovoltaic module system that combine in a hybrid format. This report will discuss the work on the project from Fall 2012 to Spring 2013. Three stages of experiments were completed. Stage 1 showed our project was functional as we were able to verify our panel produced electricity and increased the temperature of water flowing in the system by 0.65°C. Stage 2 testing included “gluing” the flow system to the back of the panel resulting in an average increase of 4.76°C in the temperature of the water in the system. Stage 3 testing included adding insulating foam to the module which resulted in increasing the average temperature of the water in our flow system by 6.95°C.
ContributorsDenke, Steven Michael (Author) / Roedel, Ron (Thesis director) / Aberle, James (Committee member) / Rauch, Dawson (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2013-05
135896-Thumbnail Image.png
Description
The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only

The purpose of the solar powered quadcopter is to join together the growing technologies of photovoltaics and quadcopters, creating a single unified device where the technologies harmonize to produce a new product with abilities beyond those of a traditional battery powered drone. Specifically, the goal is to take the battery-only flight time of a quadcopter loaded with a solar array and increase that flight time by 33% with additional power provided by solar cells. The major concepts explored throughout this project are quadcopter functionality and capability and solar cell power production. In order to combine these technologies, the solar power and quadcopter components were developed and analyzed individually before connecting the solar array to the quadcopter circuit and testing the design as a whole. Several solar copter models were initially developed, resulting in multiple unique quadcopter and solar cell array designs which underwent preliminary testing before settling on a finalized design which proved to be the most effective and underwent final timed flight tests. Results of these tests are showing that the technologies complement each other as anticipated and highlight promising results for future development in this area, in particular the development of a drone running on solar power alone. Applications for a product such as this are very promising in many fields, including the industries of power, defense, consumer goods and services, entertainment, marketing, and medical. Also, becoming a more popular device for UAV hobbyists, such developments would be very appealing for leisure flying and personal photography purposes as well.
ContributorsMartin, Heather Catrina (Author) / Bowden, Stuart (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
147605-Thumbnail Image.png
Description

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power so that it is amplifier to a set power level. The paper details the theory behind this solutions as well as the design process which includes both simulations and physical testing of the actual circuit. It also analyses results of these tests and gives suggestions as to what could be done to further improve the design. The VGA based constant output power solution was designed as a section of a larger circuit which was developed as part of a senior capstone project, which is also briefly described in the paper.

ContributorsMeyer, Sheldon (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
168299-Thumbnail Image.png
Description
Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics

Modern communication systems call for state-of-the-art links that offer almost idealistic performance. This requirement had pushed the technological world to pursue communication in frequency bands that were almost incomprehensible back when the first series of cordless cellphones were invented. These requirements have impacted everything from civilian requirements, space, medical diagnostics to defense technologies and have ushered in a new era of advancements. This work presents a new and novel approach towards improving the conventional phased array systems. The Intelligent Phase Shifter (IPS) offers phase tracking and discrimination solutions that currently plague High-Frequency wireless systems. The proposed system is implemented on (CMOS) process node to better scalability and reduce the overall power dissipated. A tracking system can discern Radio Frequency (RF) Signals’ phase characteristics using a double-balanced mixer. A locally generated reference signal is then matched to the phase of the incoming receiver using a fully modular yet continuous complete 360ᵒ phase shifter that alters the phase of the local reference and matches the phase with that of an incoming RF reference. The tracking is generally two control voltages that carry In-phase and Quadrature-phase information. These control signals offer the capability of controlling similar devices when placed in an array and eliminating any ambiguity that might occur due to in-band interference.
ContributorsLakshminarasimhaiah Rajendra, Yashas (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021
168482-Thumbnail Image.png
Description
Data transmission and reception has become an important aspect in day-to-day communication. With advancement in technology, it dictates the need for accurate data transmission and reception. For this very reason, wireless transceivers are employed in almost every industrial domain for numerous applications. A special concept of distributed transceivers is proven

Data transmission and reception has become an important aspect in day-to-day communication. With advancement in technology, it dictates the need for accurate data transmission and reception. For this very reason, wireless transceivers are employed in almost every industrial domain for numerous applications. A special concept of distributed transceivers is proven to be extremely useful in the latest technologies like Internet of Things. As the name suggests, this is a collaborative communication technique where multiple transceivers are synchronized for faster and much more reliable communication. This imposes a major challenge while designing this kind of a transceiver, as all the transceivers should be operating with carrier synchronization to maintain the proper collaboration. While there are several ways to establish this sync, this thesis emphasizes one of those techniques and tries to resolve the issue in design. The carrier synchronization is achieved using time division synchronization technique. Several challenges in implementing this technique were addressed using various models simulated in MATLAB Simulink and Keysight ADS. An in detail analysis has been performed for all the techniques used for this implementation to provide a diverse perspective.
ContributorsBoorela, Venkata Srilekhya (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios C. (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2021
168340-Thumbnail Image.png
Description
This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna

This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna is modeled and simulated in lossy media. First, the vector wave functions is solved in the fundamental mode. Next the energy flow velocity is plotted to show near-field energy distribution for both TM and TE in air and seawater environment. Finally the power relation in seawater is derived to calculate the source dipole moment and required power. In the second part, the current distribution on the antenna is derived by solving EFIE with moment of methods (MoM). Both triangle and Coifman wavelet (Coiflet) are used as basis and weight functions. Then Input impedance of the antenna is computed and results are compared with traditional sinusoid current distribution assumption. Finally the input impedance of designed antenna is computed and matching network is designed and show resonant at designed frequency. In the third part, GCPW is modeled and measured in E-band. Laboratory measurements are conducted in 75 to 84 GHz. The original system is embedded with error boxes due to misalignment and needed to be de-embedded. Then the measurement data is processed and the results is compared with raw data. In the fourth part, the horn antennas and slotted waveguide array antenna (SWA) are designed for automotive radar in 75GHz to 78GHz. The horn antennas are fabricated using 3D printing of ABS material, and electro-plating with copper. The analytic solution and HFSS simulation show good agreement with measurement.
ContributorsZhou, Sai (Author) / Pan, George (Thesis advisor) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2021
187372-Thumbnail Image.png
Description
I present a trade-study of methods for a 1-port vacuum cryogenic in-situ calibration of a vector network analyzer. The three main methods I investigated in this work were: calibration using a commercial off the shelf latching electro-mechanical six way switch, a custom switch board, and a flexible multi channel stripline

I present a trade-study of methods for a 1-port vacuum cryogenic in-situ calibration of a vector network analyzer. The three main methods I investigated in this work were: calibration using a commercial off the shelf latching electro-mechanical six way switch, a custom switch board, and a flexible multi channel stripline based printed circuit board. The test procedure was developed for use in a ground based closed-cycle cryogenic test bench to measure the reflection coefficient of a single port connectorized device under test. The device was installed in the cryogenic system alongside calibration standards. The goal of the trade study was to find which method could be used to accomplish calibration and device measurement in a single thermal cycle. Four cycles were required for industry standard open-short-load device calibration. Room temperature measurements were done with all three calibration schemes but ultimately only the single pole six throw switch proved effective enough for further testing. The cryogenic testing was carried out on an arbitrary device at ∼ 3K temperature, over a 6 GHz bandwidth. The final objective was to develop a setup and procedure for measuring the frequency and temperature dependent complex impedance of superconducting devices such as hot electron bolometer mixers, which are used for down converting the signal in the IF chain of astronomy instruments. Characterization of superconducting devices while they are at their operating temperature is challenging using traditional calibration methods. This commercial alternative is less expensive and more efficient in terms of thermal cycles and set up because it can be installed in a wide variety of cyrogenic systems.
ContributorsNeric, Marko (Author) / Trichopoulos, Georgios (Thesis advisor) / Groppi, Chris (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2023
187661-Thumbnail Image.png
Description
Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of

Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of a phased array antenna with an augmented scanning range, aiming to establish a clear connection between mathematical principles and practical circuitry. To achieve this goal, the Van der Pol (VDP) model is applied to a single-transistor oscillator to obtain the isolated limit cycle. The coupled oscillators are then integrated into a 1 times 7 coupled phased array, using the Keysight PathWave Advanced Design System (ADS) for tuning and optimization. The VDP model is used for analytic study of bifurcation, quasi-sinusoidal oscillation, quasi-periodic chaos, and oscillator death, while ADS schematics guide engineering implementation and physical fabrication. The coupled oscillators drive cavity-backed antennas, forming a one-dimensional scanning antenna array of 1 times 7. The approaches for increasing the scanning range performance are discussed.
ContributorsZhang, Kaiyue (Author) / Pan, George (Thesis advisor) / Yu, Hongbin (Committee member) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2023
171994-Thumbnail Image.png
Description
The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to

The world has seen a revolution in cellular communication with the advent of 5G, which enables gigabits per second data speed with low latency, massive capacity, and increased availability. Complex modulated signals are used in these moderncommunication systems to achieve high spectral efficiency, and these signals exhibit high peak to average power ratios (PAPR). Design of cellular infrastructure hardware to support these complex signals therefore becomes challenging, as the transmitter’s radio frequency power amplifier (RF PA) needs to remain highly efficient at both peak and backed off power conditions. Additionally, these PAs should exhibit high linearity and support continually increasing bandwidths. Many advanced PA configurations exhibit high efficiency for processing legacy communications signals. Some of the most popular architectures are Envelope Elimination and Restoration (EER), Envelope Tracking (ET), Linear Amplification using Non-linear Component (LINC), Doherty Power Amplifiers (DPA), and Polar Transmitters. Among these techniques, the DPA is the most widely used architecture for base-station applications because of its simple configuration and ability to be linearized using simple digital pre-distortion (DPD) algorithms. To support the cellular infrastructure needs of 5G and beyond, RF PAs, specifically DPA architectures, must be further enhanced to support broader bandwidths as well as smaller form-factors with higher levels of integration. The following four novel works are presented in this dissertation to support RF PA requirements for future cellular infrastructure: 1. A mathematical analysis to analyze the effects of non-linear parasitic capacitance (Cds) on the operation of continuous class-F (CCF) mode power amplifiers and identify their optimum operating range for high power and efficiency. 2. A methodology to incorporate a class-J harmonic trapping network inside the PA package by considering the effect of non-linear Cds, thus reducing the DPA footprint while achieving high RF performance. 3. A novel method of synthesizing the DPA’s output combining network (OCN) to realize an integrated two-stage integrated LDMOS asymmetric DPA. 4. A novel extended back-off efficiency range DPA architecture that engineers the mutual interaction between combining load and peaking off-state impedance. The theory and architecture are verified through a GaN-based DPA design.
ContributorsAhmed, Maruf Newaz (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2022
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05