Matching Items (7)
136442-Thumbnail Image.png
Description
A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to

A model has been developed to modify Euler-Bernoulli beam theory for wooden beams, using visible properties of wood knot-defects. Treating knots in a beam as a system of two ellipses that change the local bending stiffness has been shown to improve the fit of a theoretical beam displacement function to edge-line deflection data extracted from digital imagery of experimentally loaded beams. In addition, an Ellipse Logistic Model (ELM) has been proposed, using L1-regularized logistic regression, to predict the impact of a knot on the displacement of a beam. By classifying a knot as severely positive or negative, vs. mildly positive or negative, ELM can classify knots that lead to large changes to beam deflection, while not over-emphasizing knots that may not be a problem. Using ELM with a regression-fit Young's Modulus on three-point bending of Douglass Fir, it is possible estimate the effects a knot will have on the shape of the resulting displacement curve.
Created2015-05
135725-Thumbnail Image.png
Description
A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across the network in order to properly exploit having multiple sensors.

A distributed sensor network (DSN) is a set of spatially scattered intelligent sensors designed to obtain data across an environment. DSNs are becoming a standard architecture for collecting data over a large area. We need registration of nodal data across the network in order to properly exploit having multiple sensors. One major problem worth investigating is ensuring the integrity of the data received, such as time synchronization. Consider a group of match filter sensors. Each sensor is collecting the same data, and comparing the data collected to a known signal. In an ideal world, each sensor would be able to collect the data without offsets or noise in the system. Two models can be followed from this. First, each sensor could make a decision on its own, and then the decisions could be collected at a ``fusion center'' which could then decide if the signal is present or not. The fusion center can then decide if the signal is present or not based on the number true-or-false decisions that each sensor has made. Alternatively, each sensor could relay the data that it collects to the fusion center, and it could then make a decision based on all of the data that it then receives. Since the fusion center would have more information to base its decision on in the latter case--as opposed to the former case where it only receives a true or false from each sensor--one would expect the latter model to perform better. In fact, this would be the gold standard for detection across a DSN. However, there is random noise in the world that causes corruption of data collection, especially among sensors in a DSN. Each sensor does not collect the data in the exact same way or with the same precision. We classify these imperfections in data collections as offsets, specifically the offset present in the data collected by one sensor with respect to the rest of the sensors in the network. Therefore, reconsider the two models for a DSN described above. We can naively implement either of these models for data collection. Alternatively, we can attempt to estimate the offsets between the sensors and compensate. One could see how it would be expected that estimating the offsets within the DSN would provide better overall results than not finding estimators. This thesis will be structured as follows. First, there will be an extensive investigation into detection theory and the impact that different types of offsets have on sensor networks. Following the theory, an algorithm for estimating the data offsets will be proposed correct for the offsets. Next, we will look at Monte Carlo simulation results to see the impact on sensor performance of data offsets in comparison to a sensor network without offsets present. The algorithm is then implemented, and further experiments will demonstrate sensor performance with offset detection.
ContributorsMonardo, Vincent James (Author) / Cochran, Douglas (Thesis director) / Kierstead, Hal (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
147605-Thumbnail Image.png
Description

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power

This thesis details the design process of a variable gain amplifier (VGA) based circuit which maintains a consistent output power over a wide range of input power signals. This effect is achieved by using power detection circuitry to adjust the gain of the VGA based on the current input power so that it is amplifier to a set power level. The paper details the theory behind this solutions as well as the design process which includes both simulations and physical testing of the actual circuit. It also analyses results of these tests and gives suggestions as to what could be done to further improve the design. The VGA based constant output power solution was designed as a section of a larger circuit which was developed as part of a senior capstone project, which is also briefly described in the paper.

ContributorsMeyer, Sheldon (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
132169-Thumbnail Image.png
Description
In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a

In materials science, developing GeSn alloys is major current research interest concerning the production of efficient Group-IV photonics. These alloys are particularly interesting because the development of next-generation semiconductors for ultrafast (terahertz) optoelectronic communication devices could be accomplished through integrating these novel alloys with industry-standard silicon technology. Unfortunately, incorporating a maximal amount of Sn into a Ge lattice has been difficult to achieve experimentally. At ambient conditions, pure Ge and Sn adopt cubic (α) and tetragonal (β) structures, respectively, however, to date the relative stability and structure of α and β phase GeSn alloys versus percent composition Sn has not been thoroughly studied. In this research project, computational tools were used to perform state-of-the-art predictive quantum simulations to study the structural, bonding and energetic trends in GeSn alloys in detail over a range of experimentally accessible compositions. Since recent X-Ray and vibrational studies have raised some controversy about the nanostructure of GeSn alloys, the investigation was conducted with ordered, random and clustered alloy models.
By means of optimized geometry analysis, pure Ge and Sn were found to adopt the alpha and beta structures, respectively, as observed experimentally. For all theoretical alloys, the corresponding αphase structure was found to have the lowest energy, for Sn percent compositions up to 90%. However at 50% Sn, the correspondingβ alloy energies are predicted to be only ~70 meV higher. The formation energy of α-phase alloys was found to be positive for all compositions, whereas only two beta formation energies were negative. Bond length distributions were analyzed and dependence on Sn incorporation was found, perhaps surprisingly, not to be directly correlated with cell volume. It is anticipated that the data collected in this project may help to elucidate observed complex vibrational properties in these systems.
ContributorsLiberman-Martin, Zoe Elise (Author) / Chizmeshya, Andrew (Thesis director) / Sayres, Scott (Committee member) / Wolf, George (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132421-Thumbnail Image.png
Description
The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how

The objective of this paper is to find and describe trends in the fast Fourier transformed accelerometer data that can be used to predict the mechanical failure of large vacuum pumps used in industrial settings, such as providing drinking water. Using three-dimensional plots of the data, this paper suggests how a model can be developed to predict the mechanical failure of vacuum pumps.
ContributorsHalver, Grant (Author) / Taylor, Tom (Thesis director) / Konstantinos, Tsakalis (Committee member) / Fricks, John (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in

Non-Destructive Testing (NDT) is integral to preserving the structural health of materials. Techniques that fall under the NDT category are able to evaluate integrity and condition of a material without permanently altering any property of the material. Additionally, they can typically be used while the material is in active use instead of needing downtime for inspection.
The two general categories of structural health monitoring (SHM) systems include passive and active monitoring. Active SHM systems utilize an input of energy to monitor the health of a structure (such as sound waves in ultrasonics), while passive systems do not. As such, passive SHM tends to be more desirable. A system could be permanently fixed to a critical location, passively accepting signals until it records a damage event, then localize and characterize the damage. This is the goal of acoustic emissions testing.
When certain types of damage occur, such as matrix cracking or delamination in composites, the corresponding release of energy creates sound waves, or acoustic emissions, that propagate through the material. Audio sensors fixed to the surface can pick up data from both the time and frequency domains of the wave. With proper data analysis, a time of arrival (TOA) can be calculated for each sensor allowing for localization of the damage event. The frequency data can be used to characterize the damage.
In traditional acoustic emissions testing, the TOA combined with wave velocity and information about signal attenuation in the material is used to localize events. However, in instances of complex geometries or anisotropic materials (such as carbon fibre composites), velocity and attenuation can vary wildly based on the direction of interest. In these cases, localization can be based off of the time of arrival distances for each sensor pair. This technique is called Delta T mapping, and is the main focus of this study.
ContributorsBriggs, Nathaniel (Author) / Chattopadhyay, Aditi (Thesis director) / Papandreou-Suppappola, Antonia (Committee member) / Skinner, Travis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132515-Thumbnail Image.png
Description
This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the

This Creative Project was carried out in coordination with the capstone project, Around the Corner Imaging with Terahertz Waves. This capstone project deals with a system designed to implement Around the Corner, or Non Line-of-Sight (NLoS) Imaging. This document discusses the creation of a GUI using MATLAB to control the Terahertz Imaging system. The GUI was developed in response to a need for synchronization, ease of operation, easy parameter modification, and data management. Along the way, many design decisions were made ranging from choosing a software platform to determining how variables should be passed. These decisions and considerations are discussed in this document. The resulting GUI has measured up to the design criteria and will be able to be used by anyone wishing to use the Terahertz Imaging System for further research in the field of Around the Corner or NLoS Imaging.
ContributorsWood, Jacob Cannon (Author) / Trichopoulos, Georgios (Thesis director) / Aberle, James (Committee member) / Electrical Engineering Program (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05