Matching Items (3)
Filtering by

Clear all filters

133797-Thumbnail Image.png
Description
Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this

Parents in STEM careers are more apt to guide their kids towards STEM careers (Sherburne-Michigan, 2017). There are STEM programs and classes for students who are interested in related fields, but the conundrum is that students need to be interested in order to choose to participate. The goal of this creative project was to introduce engineering concepts in a high school class to reveal and investigate the ways in which engineering concepts can be successfully introduced to a larger student populace to increase interest in engineering programs, courses, and degrees. A lesson plan and corresponding materials - including circuit kits and a simulated ball launching station with graphical display - were made to accomplish this goal. Throughout the lesson students were asked to (1) use given materials to accomplish a goal, (2) predict outcomes based on conceptual understanding and mathematical calculations, (3) test predictions, (4) record data, and (5) analyze data to generate results. The students first created a simple circuit to understand the circuit components and learn general electrical engineering concepts. A simple light dimmer circuit let students demonstrate understanding of electrical concepts (e.g., voltage, current resistance) before using the circuit to a simulated motor in order to launch a ball. The students were then asked to predict the time and height of a ball launched with various settings of their control circuit. The students were able to test their theories with the simulated launcher test set up shown in Figure 25 and collect data to create a parabolic height versus time graph. Based on the measured graph, the students were able to record their results and compare calculated values to real-world measured values. The results of the study suggest ways to introduce students to engineering while developing hands-on concept modeling of projectile motion and circuit design in math classrooms. Additionally, this lesson identifies a rich topic for teachers and STEM education researchers to explore lesson plans with interdisciplinary connections to engineering. This report will include the inspiration for the product, related work, iterative design process, and the final design. This information will be followed by user feedback, a project reflection, and lessons learned. The report will conclude with a summary and a discussion of future work.
ContributorsBurgess, Kylee Rae (Author) / Jordan, Shawn (Thesis director) / Sohoni, Sohum (Committee member) / Kinach, Barbara (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137037-Thumbnail Image.png
Description
There is an interest in citizen scientist networks such as CoCoRaHS to develop an air temperature sensor with a solar shield that is both extremely low cost and user friendly for use in widespread data collection in order to analyze urban microclimates. This paper outlines work done to develop a

There is an interest in citizen scientist networks such as CoCoRaHS to develop an air temperature sensor with a solar shield that is both extremely low cost and user friendly for use in widespread data collection in order to analyze urban microclimates. This paper outlines work done to develop a low cost micrometeorology instrument to fulfill the design requirements set by CoCoRaHS. While the first two revisions of this technology had significant changes in development, a third revision was created as a proof of concept that low cost temperature sensors could be used in an array to accurately measure air temperature without solar radiation interference. Another technology, described as revision four, called the iButton was also evaluated and displayed promising ability to log temperatures, but costs too much for the ultra-low cost design goal. Additionally, work was done to design a radiation shield that will be prototyped and tested alongside commercial radiation shields. This controlled experiment will also include further evaluation of the iButton and the next revision of a custom microclimate temperature sensing unit to determine the best option for widespread field testing.
ContributorsMarshall, Travis Keith (Author) / Jordan, Shawn (Thesis director) / Ruddell, Benjamin (Committee member) / Barrett, The Honors College (Contributor) / Department of Engineering (Contributor)
Created2014-05
161544-Thumbnail Image.png
Description
Embedded software is different in many aspects to traditional software; as such, a software developer may face issues when attempting to transition from traditional to embedded software development. This thesis explores providing feedback and applying optimizations at the source code level of embedded software. The aim is to measure the

Embedded software is different in many aspects to traditional software; as such, a software developer may face issues when attempting to transition from traditional to embedded software development. This thesis explores providing feedback and applying optimizations at the source code level of embedded software. The aim is to measure the impact of these optimizations on teaching embedded software design principles, as well as assessing the relative success of each optimization in terms of a variety of metrics. There are many considerations when altering code and is a known limitation imposed by most software optimization schemes. By applying optimizations at the source level, the aim is to demonstrate what the optimizations do and how they provide value to the resulting software. In order to fulfill these goals, the Embedded C Source Optimizer has been developed, which is used to import and export code, select which optimizations are applied, and provide feedback to the end user. This utility abstracts away the lower level operations performed by each optimization, while conveying the resulting changes to the end user. Since embedded systems are generally quite limited compared to modern computers, someone transitioning from traditional software design to embedded software may find it challenging to understand how to overcome these limitations. Clearly conveying means to improve a naive implementation of an embedded program aids through demonstrating what changes need to be made to satisfy embedded design rules. The optimizations which the utility can apply range from simple replacement operations to more complex applications of implicit utilization of built-in hardware peripherals on supported microcontrollers. Each optimization comes with its own set of considerations, risks, and potential level of improvement to the resulting code. These optimization options are evaluated by comparing embedded software before and after each option is applied through a variety of metrics, allowing the relative success of each to be determined as effectively as possible. The end goal for this utility is to aid in crossing the hurdle from traditional software to embedded software in a comprehensive and educational manner, with the provided optimization options acting as an avenue for teaching embedded concepts.
ContributorsLisonbee, Tanner Boyd (Author) / Heinrichs, Robert (Thesis advisor) / Acuna, Ruben (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2021