Matching Items (3)
Filtering by

Clear all filters

152247-Thumbnail Image.png
Description
Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating subtle signals from biological events in a label-free, high throughput environment. The efficacy of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size of the observed target molecules. The following work advances the current SPR sensor paradigm for the purpose of small molecule detection. The detection limits of two orthogonal components of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the target molecule mass limitation of conventional SPR measurement. A simple device for high-speed microfluidic delivery of liquid samples to a sensor surface is presented to address the temporal limitations of conventional SPR measurement. The time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement. Charge-based detection of small molecules is demonstrated by plasmonic-based electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a dextran-modified sensor surface. The SPR response to an applied ac potential is a function of the surface charge density. This optical signal is comprised of a dc and an ac component, and is measured with high spatial resolution. The amplitude and phase of local surface impedance is provided by the ac component. The phase signal of the small molecules is a function of their charge status, which is manipulated by the pH of a solution. This technique is used to detect and distinguish small molecules based on their charge status, thereby circumventing the mass limitation (~100 Da) of conventional SPR measurement.
ContributorsMacGriff, Christopher Assiff (Author) / Tao, Nongjian (Thesis advisor) / Wang, Shaopeng (Committee member) / LaBaer, Joshua (Committee member) / Chae, Junseok (Committee member) / Arizona State University (Publisher)
Created2013
153997-Thumbnail Image.png
Description
Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely

Detection of molecular interactions is critical for understanding many biological processes, for detecting disease biomarkers, and for screening drug candidates. Fluorescence-based approach can be problematic, especially when applied to the detection of small molecules. Various label-free techniques, such as surface plasmon resonance technique are sensitive to mass, making it extremely challenging to detect small molecules. In this thesis, novel detection methods for molecular interactions are described.

First, a simple detection paradigm based on reflectance interferometry is developed. This method is simple, low cost and can be easily applied for protein array detection.

Second, a label-free charge sensitive optical detection (CSOD) technique is developed for detecting of both large and small molecules. The technique is based on that most molecules relevant to biomedical research and applications are charged or partially charged. An optical fiber is dipped into the well of a microplate. It detects the surface charge of the fiber, which does not decrease with the size (mass) of the molecule, making it particularly attractive for studying small molecules.

Third, a method for mechanically amplification detection of molecular interactions (MADMI) is developed. It provides quantitative analysis of small molecules interaction with membrane proteins in intact cells. The interactions are monitored by detecting a mechanical deformation in the membrane induced by the molecular interactions. With this novel method small molecules and membrane proteins interaction in the intact cells can be detected. This new paradigm provides mechanical amplification of small interaction signals, allowing us to measure the binding kinetics of both large and small molecules with membrane proteins, and to analyze heterogeneous nature of the binding kinetics between different cells, and different regions of a single cell.

Last, by tracking the cell membrane edge deformation, binding caused downstream event – granule secretory has been measured. This method focuses on the plasma membrane change when granules fuse with the cell. The fusion of granules increases the plasma membrane area and thus the cell edge expands. The expansion is localized at the vesicle release location. Granule size was calculated based on measured edge expansion. The membrane deformation due to the granule release is real-time monitored by this method.
ContributorsGuan, Yan (Author) / Tao, Nongjian (Thesis advisor) / LaBaer, Joshua (Committee member) / Goryll, Michael (Committee member) / Wang, Shaopeng (Committee member) / Arizona State University (Publisher)
Created2015
Description
The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables

The purpose of this thesis creative project was to create an educational video to present research findings on the increasingly important issue of human biospecimen preanalytic variables. When a human biospecimen, such as blood, urine, or tissue, is removed from the body, it is subjected to a plethora of variables that are not recorded or regulated in a vast majority of cases. Frequently, these samples arrive at the research or pathology lab with an unknown history, then undergo analysis for translational research purposes, or to guide clinical management decisions. Thus, compromised specimen quality caused by preanalytic variables has substantial, and potentially devastating, downstream effects. To identify the preanalytic variables with the greatest impact on blood and tissue specimen quality, 45 articles were gathered using PubMed and Google Scholar databases and cited. Based on the articles, the top five variables with the most detrimental effects were identified for both blood and tissue samples. Multiple sets of parameters ensuring specimen fitness were compared for each of the five variables for each specimen type. Then, specific parameters guaranteeing the fitness of the greatest number of analytes were verified. To present the research findings in greater detail, a paper was written that focused on identifying the top variables and key parameters to ensure analyte fitness. To present the overall issue in an easy-to-digest format, a storyboard and script were created as a guideline for a final video project. Ultimately, two alternate versions of the video were created to pertain to the audience of choice (one version for patients, one version for professionals). It is the hope that these videos will be used as educational tools to continue efforts to standardize and enforce human biospecimen preanalytic variable parameters. This is a necessary step to improve the accuracy of our biomedical research data and the healthcare of patients worldwide.
ContributorsAzcarate, Heather (Author) / Compton, Carolyn (Thesis director) / LaBaer, Joshua (Committee member) / Borges, Chad (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2018-12