Matching Items (3)
Filtering by

Clear all filters

156887-Thumbnail Image.png
Description
Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for

Computer vision technology automatically extracts high level, meaningful information from visual data such as images or videos, and the object recognition and detection algorithms are essential in most computer vision applications. In this dissertation, we focus on developing algorithms used for real life computer vision applications, presenting innovative algorithms for object segmentation and feature extraction for objects and actions recognition in video data, and sparse feature selection algorithms for medical image analysis, as well as automated feature extraction using convolutional neural network for blood cancer grading.

To detect and classify objects in video, the objects have to be separated from the background, and then the discriminant features are extracted from the region of interest before feeding to a classifier. Effective object segmentation and feature extraction are often application specific, and posing major challenges for object detection and classification tasks. In this dissertation, we address effective object flow based ROI generation algorithm for segmenting moving objects in video data, which can be applied in surveillance and self driving vehicle areas. Optical flow can also be used as features in human action recognition algorithm, and we present using optical flow feature in pre-trained convolutional neural network to improve performance of human action recognition algorithms. Both algorithms outperform the state-of-the-arts at their time.

Medical images and videos pose unique challenges for image understanding mainly due to the fact that the tissues and cells are often irregularly shaped, colored, and textured, and hand selecting most discriminant features is often difficult, thus an automated feature selection method is desired. Sparse learning is a technique to extract the most discriminant and representative features from raw visual data. However, sparse learning with \textit{L1} regularization only takes the sparsity in feature dimension into consideration; we improve the algorithm so it selects the type of features as well; less important or noisy feature types are entirely removed from the feature set. We demonstrate this algorithm to analyze the endoscopy images to detect unhealthy abnormalities in esophagus and stomach, such as ulcer and cancer. Besides sparsity constraint, other application specific constraints and prior knowledge may also need to be incorporated in the loss function in sparse learning to obtain the desired results. We demonstrate how to incorporate similar-inhibition constraint, gaze and attention prior in sparse dictionary selection for gastroscopic video summarization that enable intelligent key frame extraction from gastroscopic video data. With recent advancement in multi-layer neural networks, the automatic end-to-end feature learning becomes feasible. Convolutional neural network mimics the mammal visual cortex and can extract most discriminant features automatically from training samples. We present using convolutinal neural network with hierarchical classifier to grade the severity of Follicular Lymphoma, a type of blood cancer, and it reaches 91\% accuracy, on par with analysis by expert pathologists.

Developing real world computer vision applications is more than just developing core vision algorithms to extract and understand information from visual data; it is also subject to many practical requirements and constraints, such as hardware and computing infrastructure, cost, robustness to lighting changes and deformation, ease of use and deployment, etc.The general processing pipeline and system architecture for the computer vision based applications share many similar design principles and architecture. We developed common processing components and a generic framework for computer vision application, and a versatile scale adaptive template matching algorithm for object detection. We demonstrate the design principle and best practices by developing and deploying a complete computer vision application in real life, building a multi-channel water level monitoring system, where the techniques and design methodology can be generalized to other real life applications. The general software engineering principles, such as modularity, abstraction, robust to requirement change, generality, etc., are all demonstrated in this research.
ContributorsCao, Jun (Author) / Li, Baoxin (Thesis advisor) / Liu, Huan (Committee member) / Zhang, Yu (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2018
154464-Thumbnail Image.png
Description
The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized

The rapid growth of social media in recent years provides a large amount of user-generated visual objects, e.g., images and videos. Advanced semantic understanding approaches on such visual objects are desired to better serve applications such as human-machine interaction, image retrieval, etc. Semantic visual attributes have been proposed and utilized in multiple visual computing tasks to bridge the so-called "semantic gap" between extractable low-level feature representations and high-level semantic understanding of the visual objects.

Despite years of research, there are still some unsolved problems on semantic attribute learning. First, real-world applications usually involve hundreds of attributes which requires great effort to acquire sufficient amount of labeled data for model learning. Second, existing attribute learning work for visual objects focuses primarily on images, with semantic analysis on videos left largely unexplored.

In this dissertation I conduct innovative research and propose novel approaches to tackling the aforementioned problems. In particular, I propose robust and accurate learning frameworks on both attribute ranking and prediction by exploring the correlation among multiple attributes and utilizing various types of label information. Furthermore, I propose a video-based skill coaching framework by extending attribute learning to the video domain for robust motion skill analysis. Experiments on various types of applications and datasets and comparisons with multiple state-of-the-art baseline approaches confirm that my proposed approaches can achieve significant performance improvements for the general attribute learning problem.
ContributorsChen, Lin (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Wang, Yalin (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2016
158066-Thumbnail Image.png
Description
Recently, a well-designed and well-trained neural network can yield state-of-the-art results across many domains, including data mining, computer vision, and medical image analysis. But progress has been limited for tasks where labels are difficult or impossible to obtain. This reliance on exhaustive labeling is a critical limitation in the rapid

Recently, a well-designed and well-trained neural network can yield state-of-the-art results across many domains, including data mining, computer vision, and medical image analysis. But progress has been limited for tasks where labels are difficult or impossible to obtain. This reliance on exhaustive labeling is a critical limitation in the rapid deployment of neural networks. Besides, the current research scales poorly to a large number of unseen concepts and is passively spoon-fed with data and supervision.

To overcome the above data scarcity and generalization issues, in my dissertation, I first propose two unsupervised conventional machine learning algorithms, hyperbolic stochastic coding, and multi-resemble multi-target low-rank coding, to solve the incomplete data and missing label problem. I further introduce a deep multi-domain adaptation network to leverage the power of deep learning by transferring the rich knowledge from a large-amount labeled source dataset. I also invent a novel time-sequence dynamically hierarchical network that adaptively simplifies the network to cope with the scarce data.

To learn a large number of unseen concepts, lifelong machine learning enjoys many advantages, including abstracting knowledge from prior learning and using the experience to help future learning, regardless of how much data is currently available. Incorporating this capability and making it versatile, I propose deep multi-task weight consolidation to accumulate knowledge continuously and significantly reduce data requirements in a variety of domains. Inspired by the recent breakthroughs in automatically learning suitable neural network architectures (AutoML), I develop a nonexpansive AutoML framework to train an online model without the abundance of labeled data. This work automatically expands the network to increase model capability when necessary, then compresses the model to maintain the model efficiency.

In my current ongoing work, I propose an alternative method of supervised learning that does not require direct labels. This could utilize various supervision from an image/object as a target value for supervising the target tasks without labels, and it turns out to be surprisingly effective. The proposed method only requires few-shot labeled data to train, and can self-supervised learn the information it needs and generalize to datasets not seen during training.
ContributorsZhang, Jie (Author) / Wang, Yalin (Thesis advisor) / Liu, Huan (Committee member) / Stonnington, Cynthia (Committee member) / Liang, Jianming (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2020