Matching Items (2)
Filtering by

Clear all filters

154096-Thumbnail Image.png
Description
Virtual machines and containers have steadily improved their performance over time as a result of innovations in their architecture and software ecosystems. Network functions and workloads are increasingly migrating to virtual environments, supported by developments in software defined networking (SDN) and network function virtualization (NFV). Previous performance analyses

Virtual machines and containers have steadily improved their performance over time as a result of innovations in their architecture and software ecosystems. Network functions and workloads are increasingly migrating to virtual environments, supported by developments in software defined networking (SDN) and network function virtualization (NFV). Previous performance analyses of virtual systems in this context often ignore significant performance gains that can be acheived with practical modifications to hypervisor and host systems. In this thesis, the network performance of containers and virtual machines are measured with standard network performance tools. The performance of these systems utilizing a standard 3.18.20 Linux kernel is compared to that of a realtime-tuned variant of the same kernel. This thesis motivates improving determinism in virtual systems with modifications to host and guest kernels and thoughtful process isolation. With the system modifications described, the median TCP bandwidth of KVM virtual machines over bridged network interfaces, is increased by 10.8% with a corresponding reduction in standard deviation of 87.6%. Docker containers see a 8.8% improvement in median bandwidth and 4.4% reduction in standard deviation of TCP measurements using similar bridged networking. System tuning also reduces the standard deviation of TCP request/response latency (TCP RR) over bridged interfaces by 86.8% for virtual machines and 97.9% for containers. Hardware devices assigned to virtual systems also see reductions in variance, although not as noteworthy.
ContributorsWelch, James Matthew (Author) / Syrotiuk, Violet R. (Thesis advisor) / Wu, Carole-Jean (Committee member) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2015
161757-Thumbnail Image.png
Description
Atmospheric turbulence distorts the path of light passing through the air. When capturing images at long range, the effects of this turbulence can cause substantial geometric distortion and blur in images and videos, degrading image quality. These become more pronounced with greater turbulence, scaling with the refractive index structure constant,

Atmospheric turbulence distorts the path of light passing through the air. When capturing images at long range, the effects of this turbulence can cause substantial geometric distortion and blur in images and videos, degrading image quality. These become more pronounced with greater turbulence, scaling with the refractive index structure constant, Cn2. Removing effects of atmospheric turbulence in images has a range of applications from astronomical imaging to surveillance. Thus, there is great utility in transforming a turbulent image into a ``clean image" undegraded by turbulence. However, as the turbulence is space- and time-variant and statistically random, no closed-form solution exists for a function that performs this transformation. Prior attempts to approximate the solution include spatio-temporal models and lucky frames models, which require many images to provide a good approximation, and supervised neural networks, which rely on large amounts of simulated or difficult-to-acquire real training data and can struggle to generalize. The first contribution in this thesis is an unsupervised neural-network-based model to perform image restoration for atmospheric turbulence with state-of-the-art performance. The model consists of a grid deformer, which produces an estimated distortion field, and an image generator, which estimates the distortion-free image. This model is transferable across different datasets; its efficacy is demonstrated across multiple datasets and on both air and water turbulence. The second contribution is a supervised neural network to predict Cn2 directly from the warp field. This network was trained on a wide range of Cn2 values and estimates Cn2 with relatively good accuracy. When used on the warp field produced by the unsupervised model, this allows for a Cn2 estimate requiring only a few images without any prior knowledge of ground truth or information about the turbulence.
ContributorsWhyte, Cameron (Author) / Jayasuriya, Suren (Thesis advisor) / Espanol, Malena (Thesis advisor) / Speyer, Gil (Committee member) / Arizona State University (Publisher)
Created2021