Matching Items (382)
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
152286-Thumbnail Image.png
Description
Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus

Chronic restraint stress impairs hippocampal-mediated spatial learning and memory, which improves following a post-stress recovery period. Here, we investigated whether brain derived neurotrophic factor (BDNF), a protein important for hippocampal function, would alter the recovery from chronic stress-induced spatial memory deficits. Adult male Sprague-Dawley rats were infused into the hippocampus with adeno- associated viral vectors containing the coding sequence for short interfering (si)RNA directed against BDNF or a scrambled sequence (Scr), with both containing the coding information for green fluorescent protein to aid in anatomical localization. Rats were then chronically restrained (wire mesh, 6h/d/21d) and assessed for spatial learning and memory using a radial arm water maze (RAWM) either immediately after stressor cessation (Str-Imm) or following a 21-day post-stress recovery period (Str-Rec). All groups learned the RAWM task similarly, but differed on the memory retention trial. Rats in the Str-Imm group, regardless of viral vector contents, committed more errors in the spatial reference memory domain than did non-stressed controls. Importantly, the typical improvement in spatial memory following recovery from chronic stress was blocked with the siRNA against BDNF, as Str-Rec-siRNA performed worse on the RAWM compared to the non-stressed controls or Str-Rec-Scr. These effects were specific for the reference memory domain as repeated entry errors that reflect spatial working memory were unaffected by stress condition or viral vector contents. These results demonstrate that hippocampal BDNF is necessary for the recovery from stress-induced hippocampal dependent spatial memory deficits in the reference memory domain.
ContributorsOrtiz, J. Bryce (Author) / Conrad, Cheryl D. (Thesis advisor) / Olive, M. Foster (Committee member) / Taylor, Sara (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsMatthews, Eyona (Performer) / Yoo, Katie Jihye (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-25
ContributorsHoeckley, Stephanie (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-24
ContributorsMcClain, Katelyn (Performer) / Buringrud, Deanna (Contributor) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-31
157225-Thumbnail Image.png
Description
The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For

The present series of studies examined whether a novel implementation of an

intermittent restraint (IR) chronic stress paradigm could be used to investigate hippocampal-dependent spatial ability in both sexes. In experiments 1 and 2, Sprague- Dawley male rats were used to identify the optimal IR parameters to assess spatial ability. For IR, rats were restrained for 2 or 6hrs/day (IR2, IR6, respectively) for five days and then given two days off, a process that was repeated for three weeks and compared to rats restrained for 6hrs/d for each day (DR6) and non-stressed controls (CON). Spatial memory was tested on the radial arm water maze (RAWM), object placement (OP), novel object recognition (NOR) and Y-maze. The results for the first two experiments revealed that IR6, but not IR2, was effective in impairing spatial memory in male rats and that task order impacted performance. In experiment 3, an extended IR paradigm for six weeks was implemented before spatial memory testing commenced in male and female rats (IR- M, IR-F). Unexpectedly, an extended IR paradigm failed to impair spatial memory in either males or females, suggesting that when extended, the IR paradigm may have become predictable. In experiment 4, an unpredictable IR (UIR) paradigm was implemented, in which restraint duration (30 or 60-min) combined with orbital shaking, time of day, and the days off from UIR were varied. UIR impaired spatial memory in males, but not females. Together with other reports, these findings support the interpretation that chronic stress negatively impairs hippocampal-dependent function in males, but not females, and that females appear to be resilient to spatial memory deficits in the face of chronic stress.
ContributorsPeay, Dylan (Author) / Conrad, Cheryl D. (Thesis advisor) / Bimonte-Nelson, Heather A. (Committee member) / Wynne, Clive (Committee member) / Arizona State University (Publisher)
Created2019
ContributorsHur, Jiyoun (Performer) / Lee, Juhyun (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-01
134581-Thumbnail Image.png
Description
Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the

Chronic stress often leads to cognitive deficits, especially within the spatial memory domain mediated by the hippocampus. When chronic stress ends and a no-stress period ensues (i.e., washout, WO), spatial ability improves, which can be better than non-stressed controls (CON). The WO period is often the same duration as the chronic stress paradigm. Given the potential benefit of a post-stress WO period on cognition, it is important to investigate whether this potential benefit of a post-stress WO period has long-lasting effects. In this project, chronic restraint (6hr/d/21d) in Sprague-Dawley rats was used, as it is the minimum duration necessary to observe spatial memory deficits. Two durations of post-stress WO were used following the end of chronic restraint, 3 weeks (STR-WO3) and 6 weeks (STR-WO6). Immediately after chronic stress (STR-IMM) or the WO periods, rats were tested on various cognitive tests. We corroborated past studies that chronic stress impaired spatial memory (STR-IMM vs CON). Interestingly, STR-WO3 and STR-WO6 failed to demonstrate improved spatial memory on a radial arm water maze task, performing similarly as STR-IMM. Performance outcomes were unlikely from differences in anxiety or motivation because rats from all conditions performed similarly on an open field task and on a simple object recognition paradigm, respectively. However, performance on object placement was unusual in that very few rats explored, suggesting some degree of anxiety or fear in all groups. One possible interpretation of the unusual results of the 3 week washout group may be attributed to the different spatial memory tasks used across studies or external factors from the study. Further exploration of these other factors led to the conclusion that they did not play a role and the STR-WO3 RAWM data were anomalous to other studies. This suggests that a washout period following chronic stress may not be fully understood.
ContributorsFlegenheimer, Aaron Embden (Author) / Conrad, Cheryl (Thesis director) / Bimonte-Nelson, Heather (Committee member) / Ortiz, J. Bryce (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution and Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
ContributorsZaleski, Kimberly (Contributor) / Kazarian, Trevor (Performer) / Ryan, Russell (Performer) / IN2ATIVE (Performer) / ASU Library. Music Library (Publisher)
Created2018-09-28
133142-Thumbnail Image.png
Description
Previous research pertaining to dog memory and cognition has been confined mainly to samples of colony dogs and therefore can be hard to generalize to a larger population of pet dogs and varying breeds. The present study focused entirely on pet dogs of many different breeds, rather than colony or

Previous research pertaining to dog memory and cognition has been confined mainly to samples of colony dogs and therefore can be hard to generalize to a larger population of pet dogs and varying breeds. The present study focused entirely on pet dogs of many different breeds, rather than colony or laboratory animals for the purposes of accessibility, affordability, and novelty. Methods: We presented the dogs with a memory task in the form of a game in which the dogs chose to search for food at one of two locations at varying delay intervals, with a maximum time limit of one hour per dog. We expected our data to show a significant decrease in memory capacity and an increase in error rates among older dogs as compared to younger dogs; these results would allow us to conclude that it is likely many dogs, much like humans, experience various cognitive deficits as a function of increasing age. Results: Using one-factor ANOVA and linear and curvilinear regression analyses, we examined the relationship between the independent variable, age (individual dog ages as well as three generalized age categories), and three dependent variables. The dependent variables were: (a) percentage of correct choices at a 60 second delay interval, (b) maximum delay interval attempted (MDIA), and (c) the maximum delay interval that was completed above chance level (50%) (MDAC). We found significant results to support our hypotheses that aged dogs show spatial memory and cognitive deficits in comparison with young and middle-aged dogs, and that age can be considered a marginally significant predictor of spatial memory capacity.
ContributorsEvans, Laura Corinne (Author) / Wynne, Clive (Thesis director) / Van Bourg, Joshua (Committee member) / Glenberg, Arthur (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12