Matching Items (13)
Filtering by

Clear all filters

Description

People of color, and more especially Black Americans, make up a minuscule portion of annual National Park visitation. This podcast is a look into the prejudiced history surrounding the formation of the national parks, the modern theories surrounding continuing lack of park diversity, and personal accounts of where the movement

People of color, and more especially Black Americans, make up a minuscule portion of annual National Park visitation. This podcast is a look into the prejudiced history surrounding the formation of the national parks, the modern theories surrounding continuing lack of park diversity, and personal accounts of where the movement for outdoor equality is going and where your support should go. This all culminates into a project that aims to understand why this statistic exists as it is and present it through podcast.

ContributorsTuft, Rose Elizabeth Lincoln (Author) / Schmidt, Peter (Thesis director) / Voorhees, Matthew (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

People of color, and more especially Black Americans, make up a minuscule portion of annual National Park visitation. This podcast is a look into the prejudiced history surrounding the formation of the national parks, the modern theories surrounding continuing lack of park diversity, and personal accounts of where the movement

People of color, and more especially Black Americans, make up a minuscule portion of annual National Park visitation. This podcast is a look into the prejudiced history surrounding the formation of the national parks, the modern theories surrounding continuing lack of park diversity, and personal accounts of where the movement for outdoor equality is going and where your support should go. This all culminates into a project that aims to understand why this statistic exists as it is and present it through podcast.

ContributorsTuft, Rose Elizabeth Lincoln (Author) / Schmidt, Peter (Thesis director) / Voorhees, Matthew (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series that addresses common environmental topics and debunks myths that surround those topics.

ContributorsTurner, Natalie Ann (Co-author) / Kuta, Tiffany (Co-author) / Jones, Cassity (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsKuta, Tiffany T (Co-author) / Jones, Cassity (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Soiled: An Environmental Podcast is a six episode series where common environmental topics are discussed and misconceptions surrounding these topics are debunked.

ContributorsJones, Cassity Rachelle (Co-author) / Kuta, Tiffany (Co-author) / Turner, Natalie (Co-author) / Boyer, Mackenzie (Thesis director) / Ward, Kristen (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147712-Thumbnail Image.png
Description

Health and Wealthness is a podcast where your hosts, Emily Weigel and Hanaa Khan discuss pressing and trending topics about health and wealth that everyone should know about. Our first four episodes focus on the opioid crisis. Both the science and healthcare sides. We then go on to talk about

Health and Wealthness is a podcast where your hosts, Emily Weigel and Hanaa Khan discuss pressing and trending topics about health and wealth that everyone should know about. Our first four episodes focus on the opioid crisis. Both the science and healthcare sides. We then go on to talk about burnout and mental health in a conversational episode.

ContributorsKhan, Hanaa S (Co-author) / Weigel, Emily (Co-author) / Olive, Foster (Thesis director) / Bonfiglio, Thomas (Committee member) / Department of Psychology (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve the role of metabolic regulators. In particular, one of these peptides called MOTS-c has been shown to regulate glucose and fat metabolism in an AMPK-dependent manner. With its capacity to enter the mitochondria and impact gene expression, MOTS-c has also displayed the ability to increase aerobic exercise performance by triggering elevated synthesis of the HO-1 antioxidant. Overall these findings position MOTS-c as a promising treatment for metabolic diseases as well as a potential dietary supplement to boost ATP availability.

ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
Description
****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to be made. Instead, a first-run, practice podcast recording that was

****Project Disclaimer: Unfortunately due to the COVID-19 outbreak during Spring 2020, ASU shut down in-person classes and campus facilities as means to prevent the spread of the virus. This meant though that a polished final podcast recording was unable to be made. Instead, a first-run, practice podcast recording that was recorded before the shut down is uploaded in its stead as a reference as to how the final was intended to sound and be produced. ****


Cellular hypertrophy is an anaerobically-based, adaptive process that mammalian skeletal muscle undergoes in response to damage resulting from unaccustomed force generation by the muscle. Hypertrophy allows for the muscle tissue to recover from the immediate injury and also to be rebuilt more capable of withstanding producing the same amount of force without injury, should it happen again. This means the end result of an adapted muscle is an overall more efficient tissue. The ability to regenerate after damage to the structure and function of the muscle tissue is a highly orchestrated event involving multiple steps and key events to occur. Most briefly, a mechanical load is attempted to be lifted but due to demanding a high amount of contractile force to lift, it causes microdamage to the structural and contractile elements of muscle fiber’s sarcomeres. In addition to an inflammatory response, satellite cells, as a part of a myogenic response, are activated to invade the fiber and then permanently reside inside to produce new proteins that will replace the damaged and necrotized proteins. This addition of cellular content, repeated over multiple times, results in the increased diameter of the fibers and manifests in the visual appearance of skeletal muscle hypertrophy. These steps have been listed off devoid of the contexts in which it takes for these to occur and will be addressed within this thesis.
ContributorsDwyer, Lauren Mingna Carol (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffery (Committee member) / School of Life Sciences (Contributor) / School of Art (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05