Matching Items (2)
Filtering by

Clear all filters

136470-Thumbnail Image.png
Description
Antibiotics, bacteria, and the continuing trend of antibiotic resistance increasing in various bacteria strains is a complex and multifaceted set of relationships explored in this thesis. Examining a variety of published literature in various sectors of influence, including the social, medical, and economic divisions, this thesis examined the core factors

Antibiotics, bacteria, and the continuing trend of antibiotic resistance increasing in various bacteria strains is a complex and multifaceted set of relationships explored in this thesis. Examining a variety of published literature in various sectors of influence, including the social, medical, and economic divisions, this thesis examined the core factors and combined them into a set of recommendations for future progress. In this way, the subject of antibiotic resistance in bacteria begins with an evaluation of the history then continued into an analysis of the economic factors, a social understanding of the subject, a medical evaluation of current procedure, and a concluding framework and general set of recommendations for future use. Ultimately, these factors require a multifaceted approach in order to combat the numerous factors and contributions to emerging antibiotic resistance in bacteria both in the United States of America and around the world.
ContributorsMurphy, Emily Ann (Author) / Chhetri, Netra (Thesis director) / Ankeny, Casey (Committee member) / Hamburg, Robert (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136509-Thumbnail Image.png
Description
The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA

The primary objective of this research project is to develop dual layered polymeric microparticles with a tunable delayed release profile. Poly(L-lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) phase separate in a double emulsion process due to differences in hydrophobicity, which allows for the synthesis of double-walled microparticles with a PLA shell surrounding the PLGA core. The microparticles were loaded with bovine serum albumin (BSA) and different volumes of ethanol were added to the PLA shell phase to alter the porosity and release characteristics of the BSA. Different amounts of ethanol varied the total loading percentage of the BSA, the release profile, surface morphology, size distribution, and the localization of the protein within the particles. Scanning electron microscopy images detailed the surface morphology of the different particles. Loading the particles with fluorescently tagged insulin and imaging the particles through confocal microscopy supported the localization of the protein inside the particle. The study suggest that ethanol alters the release characteristics of the loaded BSA encapsulated in the microparticles supporting the use of a polar, protic solvent as a tool for tuning the delayed release profile of biological proteins.
ContributorsFauer, Chase Alexander (Author) / Stabenfeldt, Sarah (Thesis director) / Ankeny, Casey (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05