Matching Items (11)
Filtering by

Clear all filters

133588-Thumbnail Image.png
Description
With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements,

With the new independence of adulthood, college students are a group susceptible to adopting unsupported, if not harmful, health practices. A survey of Arizona State University undergraduate students (N=200) was conducted to evaluate supplement use, trust in information sources, and beliefs about supplement regulation. Of those who reported using supplements, college students most frequently received information from friends and family. STEM majors in fields unrelated to health who were taking a supplement were found to be less likely to receive information about the supplement from a medical practitioner than those in health fields or those in non-STEM majors (-26.9%, p=0.018). STEM majors in health-related fields were 15.0% more likely to treat colds and/or cold symptoms with research-supported methods identified from reliable sources, while non-health STEM and non-STEM majors were more likely to take unsupported cold treatments (p=0.010). Surveyed students, regardless of major, also stated they would trust a medical practitioner for supplement advice above other sources (88.0%), and the majority expressed a belief that dietary supplements are approved/regulated by the government (59.8%).
ContributorsPerez, Jacob Tanner (Author) / Hendrickson, Kirstin (Thesis director) / Lefler, Scott (Committee member) / College of Liberal Arts and Sciences (Contributor) / School of Molecular Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
137623-Thumbnail Image.png
Description
Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their

Due to its difficult nature, organic chemistry is receiving much research attention across the nation to develop more efficient and effective means to teach it. As part of that, Dr. Ian Gould at ASU is developing an online organic chemistry educational website that provides help to students, adapts to their responses, and collects data about their performance. This thesis creative project addresses the design and implementation of an input parser for organic chemistry reagent questions, to appear on his website. After students used the form to submit questions throughout the Spring 2013 semester in Dr. Gould's organic chemistry class, the data gathered from their usage was analyzed, and feedback was collected. The feedback obtained from students was positive, and suggested that the input parser accomplished the educational goals that it sought to meet.
ContributorsBeerman, Eric Christopher (Author) / Gould, Ian (Thesis director) / Wilkerson, Kelly (Committee member) / Mosca, Vince (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
135814-Thumbnail Image.png
Description
The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the

The two chapters of this thesis focus on different aspects of DNA and the properties of nucleic acids as the whole. Chapter 1 focuses on the structure of DNA and its relationship to enzymatic efficiency. Chapter 2 centers itself on threose nucleic acid and optimization of a step in the path to its synthesis. While Chapter 1 discusses DNA and Uracil-DNA Glycosylase with regards to the base excision repair pathway, Chapter 2 focuses on chemical synthesis of an intermediate in the pathway to the synthesis of TNA, an analogous structure with a different saccharide in the sugar-phosphate backbone.
Chapter 1 covers the research under Dr. Levitus. Four oligonucleotides were reacted for zero, five, and thirty minutes with uracil-DNA glycosylase and subsequent addition of piperidine. These oligonucleotides were chosen based on their torsional rigidities as predicted by past research and predictions. The objective was to better understand the relationship between the sequence of DNA surrounding the incorrect base and the enzyme’s ability to remove said base in order to prepare the DNA for the next step of the base excision repair pathway. The first pair of oligonucleotides showed no statistically significant difference in enzymatic efficiency with p values of 0.24 and 0.42, while the second pair had a p value of 0.01 at the five-minute reaction. The second pair is currently being researched at different reaction times to determine at what point the enzyme seems to equilibrate and react semi-equally with all sequences of DNA.
Chapter 2 covers the research conducted under Dr. Chaput. Along the TNA synthesis pathway, the nitrogenous base must be added to the threofuranose sugar. The objective was to optimize the original protocol of Vorbrüggen glycosylation and determine if there were better conditions for the synthesis of the preferred regioisomer. This research showed that toluene and ortho-xylene were more preferable as solvents than the original anhydrous acetonitrile, as the amount of preferred isomer product far outweighed the amount of side product formed, as well as improving total yield overall. The anhydrous acetonitrile reaction had a final yield of 60.61% while the ortho-xylene system had a final yield of 94.66%, an increase of approximately 32%. The crude ratio of preferred isomer to side product was also improved, as it went from 18% undesired in anhydrous acetonitrile to 4% undesired in ortho-xylene, both values normalized to the preferred regioisomer.
ContributorsTamirisa, Ritika Sai (Author) / Levitus, Marcia (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Windman, Todd (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
162274-Thumbnail Image.png
Description

U.S. border colonias, otherwise known as Disadvantaged Unincorporated Communities, are rural settlements along the U.S. Mexico border with substandard housing conditions. Colonia residents often face inadequate access to necessities such as appropriate shelter, septic and sewer systems, and potable water. Water insecurity in colonias poses a particularly difficult challenge for

U.S. border colonias, otherwise known as Disadvantaged Unincorporated Communities, are rural settlements along the U.S. Mexico border with substandard housing conditions. Colonia residents often face inadequate access to necessities such as appropriate shelter, septic and sewer systems, and potable water. Water insecurity in colonias poses a particularly difficult challenge for residents who require clean water not only for consumption, but also household use in sanitation and hygienic practices. As of 2015, an estimated 30% of over five million US colonia residents lack access to clean drinking water, resulting in health complications and unsanitary living conditions. Preliminary health data collected indicates that due to water insecurity, colonia residents are more likely to contract gastrointestinal disease, be exposed to carcinogenic compounds from contaminated water, and experience psychosocial distress. Yet more comprehensive research needs to be conducted to understand the full breadth of the public health issue. A scoping review on water insecurity in colonias has not been completed before and could be beneficial in informing policymakers and other stakeholders on the severity of the situation while advising possible solutions.

ContributorsZheng, Madeleine (Author) / Wutich, Amber (Thesis director) / Brewis, Alexandra (Committee member) / Kavouras, Stavros (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2021-12
Description
Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a

Cyclodextrins are known for their pharmaceutical applications in a range of pathologies. Beta(ꞵ)-cyclodextrins have been suggested to be effective scaffolds that can ligate to peptides when chemically modified, which has the potential to be cost-effective in comparison to other available treatments for antiviral therapeutics. It is hypothesized that a ꞵ-cyclodextrin platform can be modified through a few-step reaction process to develop a ꞵ-cyclodextrin-DBCO-GFP nanobody. The findings of this few-step reaction support the general approach of conjugating the ꞵ-cyclodextrin derivative to GPF nanobody for developing a cyclodextrin antiviral scaffold.
ContributorsTaniguchi, Tohma (Author) / Hariadi, Rizal (Thesis director) / Stephanopoulos, Nicholas (Committee member) / Sasmal, Ranjan (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
131404-Thumbnail Image.png
Description
As of March 2020, there were over 112,400 patients actively waiting on the United States national organ transplant waitlist with only about 3,300 donors1. Although transplantation is an effective treatment for end-stage organ failure, the access to a procedure will vary depending on national regulations, cost of health care, extensive

As of March 2020, there were over 112,400 patients actively waiting on the United States national organ transplant waitlist with only about 3,300 donors1. Although transplantation is an effective treatment for end-stage organ failure, the access to a procedure will vary depending on national regulations, cost of health care, extensive screening processes, and the availability of organs2. Organ shortage is a worldwide problem, and the growing insufficiency has resulted patients becoming too for ill or dying while waiting3. Due to the varying wait times and costs of procedures, some patients have begun to outsource their own transplantation through international transactions, also known as transplant tourism2. The 2004 World Health Assembly resolution recognized these trades as a significant health policy issue, while also acknowledging the inability of national health care systems to meet the needs of patients4. To address this issue, a proposal will be made such that all live kidney and liver donors will be compensated $22,500 and $12,150 respectively through a cost-neutral scheme based on annual healthcare expenditures per organ that would be eliminated by a transplant. With this proposal, it is suggested that the organ transplant waitlist would not only be significantly reduced, but potentially eliminated, and the crisis of organ shortage would be defeated.
ContributorsMartin, Starla (Author) / Kingsbury, Jeffrey (Thesis director) / Edmonds, Hallie (Committee member) / School of Molecular Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
166075-Thumbnail Image.png
Description

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to

Non-canonical amino acids (NCAAs) can be used in protein chemistry to determine their structures. A common method for imaging proteins is cryo-electron microscopy (cryo-EM) which is ideal for imaging proteins that cannot be obtained in large quantities. Proteins with indistinguishable features are difficult to image using this method due to the large size requirements, therefore antibodies designed specifically for binding these proteins have been utilized to better identify the proteins. By using an existing antibody that binds to stilbene, NCAAs containing this molecule can be used as a linker between proteins and an antibody. Stilbene containing amino acids can be integrated into proteins to make this process more access able. In this paper, synthesis methods for various NCAAs containing stilbene were proposed. The resulting successfully synthesized NCAAs were E)-N6-(5-oxo-5-((4-styrylphenyl) amino) pentanoyl) lysine, (R,E)-2-amino-3-(5-oxo-5-((4-styrylphenyl)amino)pentanamido)propanoic acid, (E)-2-amino-5-(5-oxo-5-((4-styrylphenyl) amino) pentanamido) pentanoic acid. A synthesis for three more shorter amino acids, (R,E)-2-amino-3-(3-oxo-3-((4-styrylphenyl) amino) propanamido) propanoic acid, (E)-2-amino-5-(3-oxo-3-((4-styrylphenyl) amino) propanamido) pentanoic acid, and (E)-N6-(3-oxo-3-((4-styrylphenyl) amino) propanoyl) lysine, is also proposed.

ContributorsJenkins, Bryll (Author) / Mills, Jeremy (Thesis director) / Ghirlanda, Giovanna (Committee member) / Nannenga, Brent (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
164829-Thumbnail Image.png
Description

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the

Amidinates and guanidinates are promising supporting ligands in organometallic and coordination chemistry, highly valued for their accessibility, tunability, and comparability with other popular anionic N-chelating hard donor ligands like β-diketiminates. By far the most powerful way to access these ligands involves direct metal-nucleophile insertion into N,N’- substituted carbodiimides. However, the majority of reported examples require the use of commercially accessible carbodiimide peptide coupling reagents with simple alkyl substituents leading to low variation in potential substituents. Presented here is the design, synthesis, and isolation of a novel N,N’-bis[3-(diphenylphosphino)propyl]carbodiimide via an Aza-Wittig reaction between two previously described air stable substrates. At room temperature, 3-(diphenylphosphanyl-borane)-propylisocyanate was added to N-(3-(diphenylphospino)propyl)-triphenylphosphinimine, leading to product formation in minutes. One-pot phosphine-borane deprotection, followed by simple filtration of the crude mixture through a small, basic silica plug using pentane and diethyl ether granted the corresponding carbodiimide in high purity and yield (over 70%), confirmed by 1H, 13C, and 31P NMR spectroscopy. In addition to accessing different central carbon substituents, modification of phosphine substituents should be easily accessible through minor variations in the synthesis. With these precursors, anionic amidinates and guanidinates capable of κ4 -N,N,P,P-coordination may be accessed. The ability of the labile phosphine arms to associate and dissociate may facilitate catalysis. Thus, this carbodiimide provides a tunable, reliable one step precursor to novel substituted amidinates and guanidinates for homogeneous transition metal catalysis.

ContributorsLeland, Brock (Author) / Trovitch, Ryan (Thesis director) / Biegasiewicz, Kyle (Committee member) / Seo, Don (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Economics (Contributor)
Created2022-05
165676-Thumbnail Image.png
Description
The Founder’s lab is a year-long program that gives students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This Barrett honors thesis

The Founder’s lab is a year-long program that gives students an opportunity to participate in a unique team-based, experiential Barrett honors thesis project to design and apply marketing and sales strategies, as well as business and financial models to start up and launch a new business. This Barrett honors thesis project focuses on increasing the accessibility of health and wellness programs for small businesses and their employees through a customizable and easily implemented third party program that encourages employee retention.
ContributorsSharifi, Megan (Author) / Chiarello, Allyssa (Co-author) / Germer, Brendan (Co-author) / Kwapiszeski, Jacob (Co-author) / Byrne, Jared (Thesis director) / Larson, Wiley (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Watts College of Public Service & Community Solut (Contributor)
Created2022-05
165750-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’- deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsNguyen, Jasmine (Author) / John, Dona (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2022-05