Matching Items (192)
Filtering by

Clear all filters

152471-Thumbnail Image.png
Description
In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles

In engineering, buckling is mechanical instability of walls or columns under compression and usually is a problem that engineers try to prevent. In everyday life buckles (wrinkles) on different substrates are ubiquitous -- from human skin to a rotten apple they are a commonly observed phenomenon. It seems that buckles with macroscopic wavelengths are not technologically useful; over the past decade or so, however, thanks to the widespread availability of soft polymers and silicone materials micro-buckles with wavelengths in submicron to micron scale have received increasing attention because it is useful for generating well-ordered periodic microstructures spontaneously without conventional lithographic techniques. This thesis investigates the buckling behavior of thin stiff films on soft polymeric substrates and explores a variety of applications, ranging from optical gratings, optical masks, energy harvest to energy storage. A laser scanning technique is proposed to detect micro-strain induced by thermomechanical loads and a periodic buckling microstructure is employed as a diffraction grating with broad wavelength tunability, which is spontaneously generated from a metallic thin film on polymer substrates. A mechanical strategy is also presented for quantitatively buckling nanoribbons of piezoelectric material on polymer substrates involving the combined use of lithographically patterning surface adhesion sites and transfer printing technique. The precisely engineered buckling configurations provide a route to energy harvesters with extremely high levels of stretchability. This stiff-thin-film/polymer hybrid structure is further employed into electrochemical field to circumvent the electrochemically-driven stress issue in silicon-anode-based lithium ion batteries. It shows that the initial flat silicon-nanoribbon-anode on a polymer substrate tends to buckle to mitigate the lithiation-induced stress so as to avoid the pulverization of silicon anode. Spontaneously generated submicron buckles of film/polymer are also used as an optical mask to produce submicron periodic patterns with large filling ratio in contrast to generating only ~100 nm edge submicron patterns in conventional near-field soft contact photolithography. This thesis aims to deepen understanding of buckling behavior of thin films on compliant substrates and, in turn, to harness the fundamental properties of such instability for diverse applications.
ContributorsMa, Teng (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongyu (Committee member) / Yu, Hongbin (Committee member) / Poon, Poh Chieh Benny (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2014
153182-Thumbnail Image.png
Description
Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O,

Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10-10}<1-210>) or activates another slip system ((0001)<11-20>, {10-11}<11-20>). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.
ContributorsBhatia, Mehul Anoopkumar (Author) / Solanki, Kiran N (Thesis advisor) / Peralta, Pedro (Committee member) / Jiang, Hanqing (Committee member) / Neithalath, Narayanan (Committee member) / Rajagopalan, Jagannathan (Committee member) / Arizona State University (Publisher)
Created2014
153257-Thumbnail Image.png
Description
The United States Department of Energy (DOE) has always held the safety and reliability of the nation's nuclear reactor fleet as a top priority. Continual improvements and advancements in nuclear fuels have been instrumental in maximizing energy generation from nuclear power plants and minimizing waste. One aspect of the DOE

The United States Department of Energy (DOE) has always held the safety and reliability of the nation's nuclear reactor fleet as a top priority. Continual improvements and advancements in nuclear fuels have been instrumental in maximizing energy generation from nuclear power plants and minimizing waste. One aspect of the DOE Fuel Cycle Research and Development Advanced Fuels Campaign is to improve the mechanical properties of uranium dioxide (UO2) for nuclear fuel applications.

In an effort to improve the performance of UO2, by increasing the fracture toughness and ductility, small quantities of oxide materials have been added to samples to act as dopants. The different dopants used in this study are: titanium dioxide, yttrium oxide, aluminum oxide, silicon dioxide, and chromium oxide. The effects of the individual dopants and some dopant combinations on the microstructure and mechanical properties are determined using indentation fracture experiments in tandem with scanning electron microscopy. Indentation fracture experiments are carried out at room temperature and at temperatures between 450 °C and 1160 °C.

The results of this work find that doping with aluminosilicate produces the largest favorable change in the mechanical properties of UO2. This sample exhibits an increase in fracture toughness at room temperature without showing a change in yield strength at elevated temperatures. The results also show that doping with Al2O3 and TiO2 produce stronger samples and it is hypothesized that this is a result of the sample containing dopant-rich secondary phase particles.
ContributorsMcDonald, Robert (Author) / Peralta, Pedro (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2014
156057-Thumbnail Image.png
Description
The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic

The stability of nanocrystalline microstructural features allows structural materials to be synthesized and tested in ways that have heretofore been pursued only on a limited basis, especially under dynamic loading combined with temperature effects. Thus, a recently developed, stable nanocrystalline alloy is analyzed here for quasi-static (<100 s-1) and dynamic loading (103 to 104 s-1) under uniaxial compression and tension at multiple temperatures ranging from 298-1073 K. After mechanical tests, microstructures are analyzed and possible deformation mechanisms are proposed. Following this, strain and strain rate history effects on mechanical behavior are analyzed using a combination of quasi-static and dynamic strain rate Bauschinger testing. The stable nanocrystalline material is found to exhibit limited flow stress increase with increasing strain rate as compared to that of both pure, coarse grained and nanocrystalline Cu. Further, the material microstructural features, which includes Ta nano-dispersions, is seen to pin dislocation at quasi-static strain rates, but the deformation becomes dominated by twin nucleation at high strain rates. These twins are pinned from further growth past nucleation by the Ta nano-dispersions. Testing of thermal and load history effects on the mechanical behavior reveals that when thermal energy is increased beyond 200 °C, an upturn in flow stress is present at strain rates below 104 s-1. However, in this study, this simple assumption, established 50-years ago, is shown to break-down when the average grain size and microstructural length-scale is decreased and stabilized below 100nm. This divergent strain-rate behavior is attributed to a unique microstructure that alters slip-processes and their interactions with phonons; thus enabling materials response with a constant flow-stress even at extreme conditions. Hence, the present study provides a pathway for designing and synthesizing a new-level of tough and high-energy absorbing materials.
ContributorsTurnage, Scott Andrew (Author) / Solanki, Kiran N (Thesis advisor) / Rajagopalan, Jagannathan (Committee member) / Peralta, Pedro (Committee member) / Darling, Kristopher A (Committee member) / Mignolet, Marc (Committee member) / Arizona State University (Publisher)
Created2017
156132-Thumbnail Image.png
Description
Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium

Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium is examined using generalized stacking fault energies (GSFE) computed by the first principles calculations. It is shown that oxygen can significantly increase the energy barrier to dislocation motion on most of the studied slip planes. Then the Peierls-Nabbaro model is utilized in conjunction with the GSFE to estimate the Peierls stress ratios for different slip systems. Using such information along with a set of tension and compression experiments, the parameters of a continuum scale crystal plasticity model, namely CRSS values, are calibrated. Effect of oxygen content on the macroscopic stress-strain response is further investigated through experiments on oxygen-boosted samples at room temperature. It is demonstrated that the crystal plasticity model can very well capture the effect of oxygen content on the global response of the samples. It is also revealed that oxygen promotes the slip activity on the pyramidal planes.

The effect of oxygen impurity on titanium is further investigated under high cycle fatigue loading. For that purpose, a two-step hierarchical crystal plasticity for fatigue predictions is presented. Fatigue indicator parameter is used as the main driving force in an energy-based crack nucleation model. To calculate the FIPs, high-resolution full-field crystal plasticity simulations are carried out using a spectral solver. A nucleation model is proposed and calibrated by the fatigue experimental data for notched titanium samples with different oxygen contents and under two load ratios. Overall, it is shown that the presented approach is capable of predicting the high cycle fatigue nucleation time. Moreover, qualitative predictions of microstructurally small crack growth rates are provided. The multi-scale methodology presented here can be extended to other material systems to facilitate a better understanding of the fundamental deformation mechanisms, and to effectively implement such knowledge in mesoscale-macroscale investigations.
ContributorsGholami Bazehhour, Benyamin (Author) / Solanki, Kiran N (Thesis advisor) / Liu, Yongming (Committee member) / Oswald, Jay J (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156466-Thumbnail Image.png
Description
Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and

Increasing density of microelectronic packages, results in an increase in thermal and mechanical stresses within the various layers of the package. To accommodate the high-performance demands, the materials used in the electronic package would also require improvement. Specifically, the damage that often occurs in solders that function as die-attachment and thermal interfaces need to be addressed. This work evaluates and characterizes thermo-mechanical damage in two material systems – Electroplated Tin and Sintered Nano-Silver solder.

Tin plated electrical contacts are prone to formation of single crystalline tin whiskers which can cause short circuiting. A mechanistic model of their formation, evolution and microstructural influence is still not fully understood. In this work, growth of mechanically induced tin whiskers/hillocks is studied using in situ Nano-indentation and Electron Backscatter Diffraction (EBSD). Electroplated tin was indented and monitored in vacuum to study growth of hillocks without the influence of atmosphere. Thermal aging was done to study the effect of intermetallic compounds. Grain orientation of the hillocks and the plastically deformed region surrounding the indent was studied using Focused Ion Beam (FIB) lift-out technique. In addition, micropillars were milled on the surface of electroplated Sn using FIB to evaluate the yield strength and its relation to Sn grain size.

High operating temperature power electronics use wide band-gap semiconductor devices (Silicon Carbide/Gallium Nitride). The operating temperature of these devices can exceed 250oC, preventing use of traditional Sn-solders as Thermal Interface materials (TIM). At high temperature, the thermomechanical stresses can severely degrade the reliability and life of the device. In this light, new non-destructive approach is needed to understand the damage mechanism when subjected to reliability tests such as thermal cycling. In this work, sintered nano-Silver was identified as a promising high temperature TIM. Sintered nano-Silver samples were fabricated and their shear strength was evaluated. Thermal cycling tests were conducted and damage evolution was characterized using a lab scale 3D X-ray system to periodically assess changes in the microstructure such as cracks, voids, and porosity in the TIM layer. The evolution of microstructure and the effect of cycling temperature during thermal cycling are discussed.
ContributorsLujan Regalado, Irene (Author) / Chawla, Nikhilesh (Thesis advisor) / Frear, Darrel (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
133917-Thumbnail Image.png
Description
Health and fast food are seemingly on two opposite ends of the spectrum, yet healthy fast food is quickly growing in popularity. As many fast food brands are adjusting their menu to accommodate to this trend, this study explores how health claims used in fast food advertising affect college students'

Health and fast food are seemingly on two opposite ends of the spectrum, yet healthy fast food is quickly growing in popularity. As many fast food brands are adjusting their menu to accommodate to this trend, this study explores how health claims used in fast food advertising affect college students' perceptions of health and their likelihood to purchase healthy fast food products. To test this, a survey gathered quantitative data to assess student's perceptions of health and fast food, as well as qualitative data of when eating healthy is appealing and unappealing. An ad manipulation was employed to test student's likelihood to purchase the product shown in the ad. Though the study did not yield significant results, the results collected indicate that health claims may not be enough to influence someone to purchase, but that taste is of student's highest priority when making food purchase decisions. Thus, the study opens the door for future research in this realm of health and fast food, and concludes with recommendations for both marketers and future researchers.
ContributorsMigray, Emilee Catherine (Author) / Gray, Nancy (Thesis director) / Samper, Adriana (Committee member) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134151-Thumbnail Image.png
Description
This paper will review past unethical studies conducted in the last 100 years on humans, including studies such as the WWII Concentration Camp studies on hypothermia and sterilization, Tuskegee Syphilis Study, and the case of Henrietta Lacks; Analyze why they were deemed unethical, the laws that emerged from these studies,

This paper will review past unethical studies conducted in the last 100 years on humans, including studies such as the WWII Concentration Camp studies on hypothermia and sterilization, Tuskegee Syphilis Study, and the case of Henrietta Lacks; Analyze why they were deemed unethical, the laws that emerged from these studies, and how it relates to contemporary technology, with a focus on the issues surrounding the development of an electronic wearable pregnancy monitor. The studies will include details of how they were conducted as well as what deemed them unethical and an explanation of why the results are unusable. Following the studies will be an explanation of the laws that were set into place following the studies with a lead into current technologies and how these technologies created a new set of ethics. The Google Mini, the wearable biosensor onesies for infants, and the intensive care unit at Banner Baywood will be described and so will their role in the development of an electronic wearable pregnancy monitor. The mini-meta analysis includes possible features of the monitor as well as a description of what the ethical consent form will look like. To conclude the paper, the importance of analyzing past unethical studies will help create a new ethical device that will make a point to go above and beyond to ensure the physical health of unborn children, in a way that is both ethical and significant.
ContributorsWallace, Sydney Sarah (Author) / Hall, Rick (Thesis director) / Kamenca, Andrea (Committee member) / Human Systems Engineering (Contributor) / Arizona State University. College of Nursing & Healthcare Innovation (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
134192-Thumbnail Image.png
Description
Forty collegiate gymnasts were recruited for a nutrition and health study. Participants must have been at least eighteen years old at Arizona State University (ASU) in the club or team gymnastics program. The Institutional Review Board (IRB) reviewed and accepted my survey in order to hand out to the gymnasts.

Forty collegiate gymnasts were recruited for a nutrition and health study. Participants must have been at least eighteen years old at Arizona State University (ASU) in the club or team gymnastics program. The Institutional Review Board (IRB) reviewed and accepted my survey in order to hand out to the gymnasts. The ASU club and team coach and the ASU study team also approved my survey. As soon as the survey was approved, it was emailed to all of the gymnasts. ASU gymnasts were surveyed on nutritional knowledge and personal health. Subjects answered a quiz on nutrient needs and serving sizes. Personal questions consisted of height, weight, injuries, body image, and typical meal plans. Gymnasts were given a $10 compensation to increase the participation. We found that only 16% of gymnasts surveyed scored a 70% or higher on their nutritional knowledge. Although these gymnasts do not have adequate knowledge, the majority consume a healthy diet. Diets included fruits, vegetables, protein-rich foods, and few high fat and sugary foods. Four of the gymnasts had one or fewer injuries in the past two years, although, four gymnasts also had three or more injuries. No correlation was found between diet and injuries. There was also no correlation between the gymnast's nutritional knowledge and their health.
ContributorsKugler, Natalie K. (Author) / Levinson, Simin (Thesis director) / Berger, Christopher (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
135204-Thumbnail Image.png
Description
The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed

The vastly growing field of supercomputing is in dire need of a new measurement system to optimize JMRAM (Josephson junction magnetoresistive random access memory) devices. To effectively measure these devices, an ultra-low-noise, low cost cryogenic dipping probe with a dynamic voltage range is required. This dipping probe has been designed by ASU with <100 nVp-p noise, <10 nV offsets, 10 pV to 16 mV voltage range, and negligible thermoelectric drift. There is currently no other research group or company that can currently match both these low noise levels and wide voltage range. Two different dipping probes can be created with these specifications: one for high-use applications and one for low-use applications. The only difference between these probes is the outer shell; the high-use application probe has a shell made of G-10 fiberglass for a higher price, and the low-use application probe has a shell made of AISI 310 steel for a lower price. Both types of probes can be assembled in less than 8 hours for less than $2,500, requiring only soldering expertise. The low cost and short time to create these probes makes wide profit margins possible. The market for these cryogenic dipping probes is currently untapped, as most research groups and companies that use these probes build their own, which allows for rapid business growth. These potential consumers can be easily reached by marketing these probes at superconducting conferences. After several years of selling >50 probes, mass production can easily become possible by hiring several technicians, and still maintaining wide profit margins.
ContributorsHudson, Brooke Ashley (Author) / Adams, James (Thesis director) / Anwar, Shahriar (Committee member) / Materials Science and Engineering Program (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05