Matching Items (3)
Filtering by

Clear all filters

Description
For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery

For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery size should be increased. Another way is to increase the efficiency of the propellers. Previous research shows that ducting a propeller can cause an increase of up to 94 % in the thrust produced by the rotor-duct system. This research focused on developing and testing a quadcopter having a centrally ducted rotor which produces 60 % of the total system thrust and 3 other peripheral rotors. This quadcopter will provide longer flight times while having the same maneuvering flexibility in planar movements.
ContributorsLal, Harsh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
136546-Thumbnail Image.png
Description
The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding

The generation of walking motion is one of the most vital functions of the human body because it allows us to be mobile in our environment. Unfortunately, numerous individuals suffer from gait impairment as a result of debilitating conditions like stroke, resulting in a serious loss of mobility. Our understanding of human gait is limited by the amount of research we conduct in relation to human walking mechanisms and their characteristics. In order to better understand these characteristics and the systems involved in the generation of human gait, it is necessary to increase the depth and range of research pertaining to walking motion. Specifically, there has been a lack of investigation into a particular area of human gait research that could potentially yield interesting conclusions about gait rehabilitation, which is the effect of surface stiffness on human gait. In order to investigate this idea, a number of studies have been conducted using experimental devices that focus on changing surface stiffness; however, these systems lack certain functionality that would be useful in an experimental scenario. To solve this problem and to investigate the effect of surface stiffness further, a system has been developed called the Variable Stiffness Treadmill system (VST). This treadmill system is a unique investigative tool that allows for the active control of surface stiffness. What is novel about this system is its ability to change the stiffness of the surface quickly, accurately, during the gait cycle, and throughout a large range of possible stiffness values. This type of functionality in an experimental system has never been implemented and constitutes a tremendous opportunity for valuable gait research in regard to the influence of surface stiffness. In this work, the design, development, and implementation of the Variable Stiffness Treadmill system is presented and discussed along with preliminary experimentation. The results from characterization testing demonstrate highly accurate stiffness control and excellent response characteristics for specific configurations. Initial indications from human experimental trials in relation to quantifiable effects from surface stiffness variation using the Variable Stiffness Treadmill system are encouraging.
ContributorsBarkan, Andrew Robert (Author) / Artemiadis, Panagiotis (Thesis director) / Santello, Marco (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
134988-Thumbnail Image.png
Description
The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered

The quality of life of many people is lowered by impediments to walking ability caused by neurological conditions such as strokes. Since the ankle joint plays an important role in locomotion, it is a common subject of study in rehabilitation research. Robotic devices such as active ankle-foot orthoses and powered exoskeletons have the potential to be used directly in physical therapy or indirectly in research pursuing more effective rehabilitation methods. This paper presents the LiTREAD, a lightweight three degree-of-freedom robotic exoskeletal ankle device. This novel robotic system is designed to be worn on a user's leg and actuate the foot position during treadmill studies. The robot's sagittal plane actuation is complemented by passive virtual axis systems in the frontal and transverse planes. Together, these degrees of freedom allow the device to approximate the full range of motion of the ankle. The virtual axis mechanisms feature locking configurations that will allow the effect of these degrees of freedom on gait dynamics to be studied. Based on a kinematic analysis of the robot's actuation and geometry, it is expected to meet and exceed its torque and speed targets, respectively. The device will fit either leg of a range of subject sizes, and is expected to weigh just 1.3 kg (2.9 lb.). These features and characteristics are designed to minimize the robot's interference with the natural walking motion. Pending validation studies confirming that all design criteria have been met, the LiTREAD prototype that has been constructed will be utilized in various experiments investigating properties of the ankle such as its mechanical impedance. It is hoped that the LiTREAD will yield valuable data that will expand our knowledge of the ankle and aid in the design of future lower-extremity devices.
ContributorsCook, Andrew James Henry (Author) / Lee, Hyunglae (Thesis director) / Artemiadis, Panagiotis (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12