Matching Items (2)
Filtering by

Clear all filters

155877-Thumbnail Image.png
Description
Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe

Zinc telluride (ZnTe) is an attractive II-VI compound semiconductor with a direct

bandgap of 2.26 eV that is used in many applications in optoelectronic devices. Compared

to the two dimensional (2D) thin-film semiconductors, one-dimensional (1D)

nanowires can have different electronic properties for potential novel applications.

In this work, we present the study of ZnTe nanowires (NWs) that are synthesized

through a simple vapor-liquid-solid (VLS) method. By controlling the presence or

the absence of Au catalysts and controlling the growth parameters such as growth

temperature, various growth morphologies of ZnTe, such as thin films and nanowires

can be obtained. The characterization of the ZnTe nanostructures and films was

performed using scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy

(EDX), high- resolution transmission electron microscope (HRTEM), X-ray

diffraction (XRD), photoluminescence (PL), Raman spectroscopy and light scattering

measurement. After confirming the crystal purity of ZnTe, two-terminal diodes and

three-terminal transistors were fabricated with both nanowire and planar nano-sheet

configurations, in order to correlate the nanostructure geometry to device performance

including field effect mobility, Schottky barrier characteristics, and turn-on

characteristics. Additionally, optoelectronic properties such as photoconductive gain

and responsivity were compared against morphology. Finally, ZnTe was explored in

conjunction with ZnO in order to form type-II band alignment in a core-shell nanostructure.

Various characterization techniques including scanning electron microscopy,

energy-dispersive X-ray spectroscopy , x-ray diffraction, Raman spectroscopy, UV-vis

reflectance spectra and photoluminescence were used to investigate the modification

of ZnO/ZnTe core/shell structure properties. In PL spectra, the eliminated PL intensity

of ZnO wires is primarily attributed to the efficient charge transfer process

occurring between ZnO and ZnTe, due to the band alignment in the core/shell structure. Moreover, the result of UV-vis reflectance spectra corresponds to the band

gap energy of ZnO and ZnTe, respectively, which confirm that the sample consists of

ZnO/ZnTe core/shell structure of good quality.
ContributorsPeng, Jhih-hong (Author) / Yu, Hongbin (Thesis advisor) / Roedel, Ronald (Committee member) / Goryll, Michael (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2017
158522-Thumbnail Image.png
Description
This dissertation focuses on the structural and optical properties of III-V semiconductor materials. Transmission electron microscopy and atomic force microscopy are used to study at the nanometer scale, the structural properties of defects, interfaces, and surfaces. A correlation with optical properties has been performed using cathodoluminescence.

The dissertation consists of four

This dissertation focuses on the structural and optical properties of III-V semiconductor materials. Transmission electron microscopy and atomic force microscopy are used to study at the nanometer scale, the structural properties of defects, interfaces, and surfaces. A correlation with optical properties has been performed using cathodoluminescence.

The dissertation consists of four parts. The first part focuses on InAs quantum dots (QDs) embedded in a GaInP matrix for applications into intermediate band solar cells. The CuPt ordering of the group-III elements in Ga0.5In0.5P has been found to vary during growth of InAs QDs capped with GaAs. The degree of ordering depends on the deposition time of the QDs and on the thickness of the capping layer. The results indicate that disordered GaInP occurs in the presence of excess indium at the growth front.

The second part focuses on the effects of low-angle off-axis GaN substrate orientation and growth rates on the surface morphology of Mg-doped GaN epilayers. Mg doping produces periodic steps and a tendency to cover pinholes associated with threading dislocations. With increasing miscut angle, the steps are observed to increase in height from single to double basal planes, with the coexistence of surfaces with different inclinations. The structural properties are correlated with the electronic properties of GaN epilayers, indicating step bunching reduces the p-type doping efficiency. It is also found that the slower growth rates can enhance step-flow growth and suppress step bunching.

The third part focuses on the effects of inductively-coupled plasma etching on GaN epilayers. The results show that ion energy rather than ion density plays the key role in the etching process, in terms of structural and optical properties of the GaN films. Cathodoluminescence depth-profiling indicates that the band-edge emission of etched GaN is significantly quenched.

The fourth part focuses on growth of Mg-doped GaN on trench patterns. Anisotropic growth and nonuniform acceptor incorporation in p-GaN films have been observed. The results indicate that growth along the sidewall has a faster growth rate and therefore a lower acceptor incorporation efficiency, compared to the region grown on the basal plane.
ContributorsSU, PO-YI (Author) / Ponce, Fernando A. (Thesis advisor) / Smith, David J. (Committee member) / Crozier, Peter A. (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2020