Matching Items (6)
Filtering by

Clear all filters

150213-Thumbnail Image.png
Description
Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively

Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical and microstructure of these wires. The focus of this thesis is on optical study of semiconductor NWs in the mid-infrared wavelengths. First, differently structured InAs NWs grown using various methods were characterized and compared. Three main PL peaks which are below, near and above InAs bandgap, respectively, were observed. The octadecylthiol self-assembled monolayer was employed to passivate the surface of InAs NWs to eliminate or reduce the effects of the surface states. The band-edge emission from wurtzite-structured NWs was completely recovered after passivatoin. The passivated NWs showed very good stability in air and under heat. In the second part, mid-infrared optical study was conducted on PbS wires of subwavelength diameter and lasing was demonstrated under optical pumping. The PbS wires were grown on Si substrate using chemical vapor deposition and have a rock-salt cubic structure. Single-mode lasing at the wavelength of ~3000-4000 nm was obtained from single as-grown PbS wire up to the temperature of 115 K. PL characterization was also utilized to demonstrate the highest crystallinity of the vertical arrays of InP and InGaAs/InP composition-graded heterostructure NWs made by a top-down fabrication method. TEM-related measurements were performed to study the crystal structures and elemental compositions of the Er-compound core-shell NWs. The core-shell NWs consist of an orthorhombic-structured erbium chloride silicate shell and a cubic-structured silicon core. These NWs provide unique Si-compatible materials with emission at 1530 nm for optical communications and solid state lasers.
ContributorsSun, Minghua (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Carpenter, Ray W. (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2011
151238-Thumbnail Image.png
Description
Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning

Recently a new materials platform consisting of semiconductors grown on GaSb and InAs substrates with lattice constants close to 6.1 A was proposed by our group for various electronic and optoelectronic applications. This materials platform consists of both II-VI (MgZnCdHg)(SeTe) and III-V (InGaAl)(AsSb) compound semiconductors, which have direct bandgaps spanning the entire energy spectrum from far-IR (~0 eV) up to UV (~3.4 eV). The broad range of bandgaps and material properties make it very attractive for a wide range of applications in optoelectronics, such as solar cells, laser diodes, light emitting diodes, and photodetectors. Moreover, this novel materials system potentially offers unlimited degrees of freedom for integration of electronic and optoelectronic devices onto a single substrate while keeping the best possible materials quality with very low densities of misfit dislocations. This capability is not achievable with any other known lattice-matched semiconductors on any available substrate. In the 6.1-A materials system, the semiconductors ZnTe and GaSb are almost perfectly lattice-matched with a lattice mismatch of only 0.13%. Correspondingly, it is expected that high quality ZnTe/GaSb and GaSb/ZnTe heterostructures can be achieved with very few dislocations generated during growth. To fulfill the task, their MBE growth and material properties are carefully investigated. High quality ZnTe layers grown on various III-V substrates and GaSb grown on ZnTe are successfully achieved using MBE. It is also noticed that ZnTe and GaSb have a type-I band-edge alignment with large band offsets (delta_Ec=0.934 eV, delta_Ev=0.6 eV), which provides strong confinement for both electrons and holes. Furthermore, a large difference in refractive index is found between ZnTe and GaSb (2.7 and 3.9, respectively, at 0.7 eV), leading to excellent optical confinement of the guided optical modes in planar semiconductor lasers or distributed Bragg reflectors (DBR) for vertical-cavity surface-emitting lasers. Therefore, GaSb/ZnTe double-heterostructure and ZnTe/GaSb DBR structure are suitable for use in light emitting devices. In this thesis work, experimental demonstration of these structures with excellent structural and optical properties is reported. During the exploration on the properties of various ZnTe heterostructures, it is found that residual tensile strains exist in the thick ZnTe epilayers when they are grown on GaAs, InP, InAs and GaSb substrates. The presence of tensile strains is due to the difference in thermal expansion coefficients between the epilayers and the substrates. The defect densities in these ZnTe layers become lower as the ZnTe layer thickness increases. Growth of high quality GaSb on ZnTe can be achieved using a temperature ramp during growth. The influence of temperature ramps with different ramping rates in the optical properties of GaSb layer is studied, and the samples grown with a temperature ramp from 360 to 470 C at a rate of 33 C/min show the narrowest bound exciton emission peak with a full width at half maximum of 15 meV. ZnTe/GaSb DBR structures show excellent reflectivity properties in the mid-infrared range. A peak reflectance of 99% with a wide stopband of 480 nm centered at 2.5 um is measured from a ZnTe/GaSb DBR sample of only 7 quarter-wavelength pairs.
ContributorsFan, Jin (Author) / Zhang, Yong-Hang (Thesis advisor) / Smith, David (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
153867-Thumbnail Image.png
Description
High photoluminescence (PL) quantum yields reported from amorphous (a-Si) and crystalline (c-Si) nanoparticles have opened up lots of possibilities for use of silicon in optical applications such as light emitting diodes (LEDs), photonics and solar cells with added processing and cost benefits. However, the PL response and the mechanisms behind

High photoluminescence (PL) quantum yields reported from amorphous (a-Si) and crystalline (c-Si) nanoparticles have opened up lots of possibilities for use of silicon in optical applications such as light emitting diodes (LEDs), photonics and solar cells with added processing and cost benefits. However, the PL response and the mechanisms behind it are highly dependent on the matrix in which the nanoparticles are grown and on the growth method. While, the bottom-up approach for deposition of free standing nanoparticles seem to be perfectly suited for large area deposition for LED and solar cell applications, the dominant growth techniques (laser ablation and pyrolysis) have been shown to suffer from limitations in control over size distribution of nanoparticles and the requirement of equipment capable of withstanding high temperature. This led to the exploration of plasma based synthesis methods in this work.

Towards this effort, the development and automation of a novel tool “Anny” for synthesis of silicon nanoparticles using non-thermal plasma chamber is reported. These nanoparticles are then accelerated due to choked flow through a nozzle leading to substrate independent deposition. The nanoparticle properties are characterized against precursor gas flow rates and RF power to identify the optimum growth conditions for a stable, continuous deposition. It is found that amorphous nanoparticles offer a wide variety of chamber conditions for growth with a high throughput, stable plasma for continuous, long term operations.

The quantum confinement model for crystalline and spatial confinement models for amorphous nanoparticles in our size regime (6-8nm) are suggested for free standing nanoparticles and we report a high PL output from well passivated amorphous nanoparticles.

The PL output and its dependence on stability of surface hydrogen passivation is explored using Fourier Transform Infrared spectroscopy (FTIR). It is shown that the amorphous nanoparticles have a better and more stable passivation compared to crystalline nanoparticles grown under similar conditions. Hence, we show a-Si nanoparticles as exciting alternatives for optical applications to c-Si nanoparticles.
ContributorsGarg, Prateek (Author) / Holman, Zachary C (Thesis advisor) / Zhang, Yong H (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2015
155070-Thumbnail Image.png
Description
Sb-based type-II superlattices (T2SLs) are potential alternative to HgCdTe for infrared detection due to their low manufacturing cost, good uniformity, high structural stability, and suppressed Auger recombination. The emerging InAs/InAsSb T2SLs have minority carrier lifetimes 1-2 orders of magnitude longer than those of the well-studied InAs/InGaSb T2SLs, and therefore have

Sb-based type-II superlattices (T2SLs) are potential alternative to HgCdTe for infrared detection due to their low manufacturing cost, good uniformity, high structural stability, and suppressed Auger recombination. The emerging InAs/InAsSb T2SLs have minority carrier lifetimes 1-2 orders of magnitude longer than those of the well-studied InAs/InGaSb T2SLs, and therefore have the potential to achieve photodetectors with higher performance. This work develops a novel method to measure the minority carrier lifetimes in infrared materials, and reports a comprehensive characterization of minority carrier lifetime and transport in InAs/InAsSb T2SLs at temperatures below 77 K.

A real-time baseline correction (RBC) method for minority carrier lifetime measurement is developed by upgrading a conventional boxcar-based time-resolved photoluminescence (TRPL) experimental system that suffers from low signal-to-noise ratio due to strong low frequency noise. The key is to modify the impulse response of the conventional TRPL system, and therefore the system becomes less sensitive to the dominant noise. Using this RBC method, the signal-to-noise ratio is improved by 2 orders of magnitude.

A record long minority carrier lifetime of 12.8 μs is observed in a high-quality mid-wavelength infrared InAs/InAsSb T2SLs at 15 K. It is further discovered that this long lifetime is partially due to strong carrier localization, which is revealed by temperature-dependent photoluminescence (PL) and TRPL measurements for InAs/InAsSb T2SLs with different period thicknesses. Moreover, the PL and TRPL results suggest that the atomic layer thickness variation is the main origin of carrier localization, which is further confirmed by a calculation using transfer matrix method.

To study the impact of the carrier localization on the device performance of InAs/InAsSb photodetectors, minority hole diffusion lengths are determined by the simulation of external quantum efficiency (EQE). A comparative study shows that carrier localization has negligible effect on the minority hole diffusion length in InAs/InAsSb T2SLs, and the long minority carrier lifetimes enhanced by carrier localization is not beneficial for photodetector operation.
ContributorsLin, Zhiyuan (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155558-Thumbnail Image.png
Description
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of

Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
ContributorsBecker, Jacob J (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2017
158686-Thumbnail Image.png
Description
Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding

Delamination of solar module interfaces often occurs in field-tested solar modules after decades of service due to environmental stressors such as humidity. In the presence of water, the interfaces between the encapsulant and the cell, glass, and backsheet all experience losses of adhesion, exposing the module to accelerated degradation. Understanding the relation between interfacial adhesion and water content inside photovoltaic modules can help mitigate detrimental power losses. Water content measurements via water reflectometry detection combined with 180° peel tests were used to study adhesion of module materials exposed to damp heat and dry heat conditions. The effect of temperature, cumulative water dose, and water content on interfacial adhesion between ethylene vinyl acetate and (1) glass, (2) front of the cell, and (3) backsheet was studied. Temperature and time decreased adhesion at all these interfaces. Water content in the sample during the measurement showed significant decreases in adhesion for the Backsheet/Ethylene vinyl acetate interface. Water dose showed little effect for the Glass/ Ethylene vinyl acetate and Backsheet/ Ethylene vinyl acetate interfaces, but there was significant adhesion loss with water dose at the front cell busbar/encapsulant interface. Initial tensile test results to monitor the effects of the mechanical properties ethylene vinyl acetate and backsheet showed water content increasing the strength of ethylene vinyl acetate during plastic deformation but no change in the strength of the backsheet properties. This mechanical property change is likely inducing variation along the peel interface to possibly convolute the adhesion measurements conducted or to explain the variation seen for the water saturated and dried peel test sample types.
ContributorsTheut, Nicholas (Author) / Bertoni, Mariana (Thesis advisor) / Holman, Zachary (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2020