Matching Items (28)
Filtering by

Clear all filters

152185-Thumbnail Image.png
Description
Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e. Sprayed Polyurethane Foam Roofs (SPF roofs). Thirty seven urethane coated SPF roofs that were installed in 2005 / 2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of 4 year, 6 year and 7 year marks. A repairing criteria was established after a 6 year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time of installation factors i.e. contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs whereas the contractor and the season when the roof was installed did affect the quality of the roofs.
ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2013
152153-Thumbnail Image.png
Description
Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can

Transmission expansion planning (TEP) is a complex decision making process that requires comprehensive analysis to determine the time, location, and number of electric power transmission facilities that are needed in the future power grid. This dissertation investigates the topic of solving TEP problems for large power systems. The dissertation can be divided into two parts. The first part of this dissertation focuses on developing a more accurate network model for TEP study. First, a mixed-integer linear programming (MILP) based TEP model is proposed for solving multi-stage TEP problems. Compared with previous work, the proposed approach reduces the number of variables and constraints needed and improves the computational efficiency significantly. Second, the AC power flow model is applied to TEP models. Relaxations and reformulations are proposed to make the AC model based TEP problem solvable. Third, a convexified AC network model is proposed for TEP studies with reactive power and off-nominal bus voltage magnitudes included in the model. A MILP-based loss model and its relaxations are also investigated. The second part of this dissertation investigates the uncertainty modeling issues in the TEP problem. A two-stage stochastic TEP model is proposed and decomposition algorithms based on the L-shaped method and progressive hedging (PH) are developed to solve the stochastic model. Results indicate that the stochastic TEP model can give a more accurate estimation of the annual operating cost as compared to the deterministic TEP model which focuses only on the peak load.
ContributorsZhang, Hui (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Mittelmann, Hans D (Committee member) / Hedman, Kory W (Committee member) / Arizona State University (Publisher)
Created2013
151282-Thumbnail Image.png
Description
The goal of this research study was to identify the competencies the Project Manager (PM) will need to respond to the challenges the construction industry faces in 2022 and beyond. The study revealed twenty-one emerging challenges for construction PMs grouped into four primary disruptive forces: workforce demographics, globalization, rapidly evolving

The goal of this research study was to identify the competencies the Project Manager (PM) will need to respond to the challenges the construction industry faces in 2022 and beyond. The study revealed twenty-one emerging challenges for construction PMs grouped into four primary disruptive forces: workforce demographics, globalization, rapidly evolving technology, and changing organizational structures. The future PM will respond to these emerging challenges using a combination of fourteen competencies. The competencies are grouped into four categories: technical (multi-disciplined, practical understanding of technology), management (keen business insight, understanding of project management, knowledge network building, continuous risk monitoring), cognitive (complex decisions making, emotional maturity, effective communication), and leadership (leveraging diverse thinking, building relationships, engaging others, mentoring, building trust). Popular data collection methods used in project management research, such as surveys and interviews, have received criticism about the differences between stated responses to questions, what respondents say they will do, and revealed preferences, what they actually practice in the workplace. Rather than relying on surveys, this research study utilized information generated from games and exercises bundled into one-day training seminars conducted by Construction Industry Institute (CII) companies for current and upcoming generations of PMs. Educational games and exercises provide participants with the opportunity to apply classroom learning and workplace experience to resolve issues presented in real-world scenarios, providing responses that are more closely aligned with the actual decisions and activities occurring on projects. The future competencies were identified by combining results of the literature review with information from the games and exercises through an iterative cycle of data mining, analysis, and consolidation review sessions with CII members. This competency forecast will be used as a basis for company recruiting and to create tools for professional development programs and project management education at the university level. In addition to the competency forecast, the research identified simulation games and exercises as components of a project management development program in a classroom setting. An instrument that links the emerging challenges with the fourteen competencies and learning tools that facilitate the mastering of these competencies has also been developed.
ContributorsKing, Cynthia Joyce (Author) / Wiezel, Avi (Thesis advisor) / Badger, William (Committee member) / Sullivan, Kenneth (Committee member) / Arizona State University (Publisher)
Created2012
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152799-Thumbnail Image.png
Description
With the increased penetration of solar PV, it has become considerable for the system planners and operators to recognize the impact of PV plant on the power system stability and reliable operation of grid. This enforced the development of adequate PV system models for grid planning and interconnection studies. Western

With the increased penetration of solar PV, it has become considerable for the system planners and operators to recognize the impact of PV plant on the power system stability and reliable operation of grid. This enforced the development of adequate PV system models for grid planning and interconnection studies. Western Electricity Coordinating Council (WECC) Renewable Energy Modeling Task Force has developed generator/converter, electrical controller and plant controller modules to represent positive sequence solar PV plant model for grid interconnection studies. This work performs the validation of these PV plant models against the field measured data. Sheer purpose of this validation effort is to authenticate model accuracy and their capability to represent dynamics of a solar PV plant. Both steady state and dynamic models of PV plant are discussed in this work. An algorithm to fine tune and determine the electrical controller and plant controller module gains is developed. Controller gains as obtained from proposed algorithm is used in PV plant dynamic simulation model. Model is simulated for a capacitor bank switching event and simulated plant response is then compared with field measured data. Validation results demonstrate that, the proposed algorithm is performing well to determine controller gains within the region of interest. Also, it concluded that developed PV plant models are adequate enough to capture PV plant dynamics.
ContributorsSoni, Sachin (Author) / Karady, George G. (Thesis advisor) / Undrill, John (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2014
152888-Thumbnail Image.png
Description
Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management

Owner organizations in the architecture, engineering, and construction (AEC) industry are presented with a wide variety of project delivery approaches. Implementation of these approaches, while enticing due to their potential to save money, reduce schedule delays, or improve quality, is extremely difficult to accomplish and requires a concerted change management effort. Research in the field of organizational behavior cautions that perhaps more than half of all organizational change efforts fail to accomplish their intended objectives. This study utilizes an action research approach to analyze change message delivery within owner organizations, model owner project team readiness and adoption of change, and identify the most frequently encountered types of resistance from lead project members. The analysis methodology included Spearman's rank order correlation, variable selection testing via three methods of hierarchical linear regression, relative weight analysis, and one-way ANOVA. Key findings from this study include recommendations for communicating the change message within owner organizations, empirical validation of critical predictors for change readiness and change adoption among project teams, and identification of the most frequently encountered resistive behaviors within change implementation in the AEC industry. A key contribution of this research is the recommendation of change management strategies for use by change practitioners.
ContributorsLines, Brian (Author) / Sullivan, Kenneth (Thesis advisor) / Wiezel, Avi (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2014
153080-Thumbnail Image.png
Description
Qualifications based selection (QBS) of construction services uses a variety of criteria to evaluate proponents and select a contractor for the project. The criteria typically fall into three categories: past performance and technical capability, key personnel, and price, with price often being considered the most important factor in selection. Evaluation

Qualifications based selection (QBS) of construction services uses a variety of criteria to evaluate proponents and select a contractor for the project. The criteria typically fall into three categories: past performance and technical capability, key personnel, and price, with price often being considered the most important factor in selection. Evaluation and the merits of the key personnel category is not well described or discussed in research. Prior research has investigated the evaluation criteria elements and their ability to differentiate proponents. This case study uses QBS evaluation data from fifty-eight construction projects to show that use of a structured interview process provides the highest level of differentiation of qualifications of proponents, as compared to the proposed price and the technical proposal. The results of the analysis also indicate: 1) the key personnel element (the interview) is statistically more important than price,

2) Contractors who propose on projects using QBS should use their best people in proposal response, and 3) Contractors should educate/prepare their teams for interviews, people count.
ContributorsSawyer, Jeff T (Author) / Sullivan, Kennth S (Thesis advisor) / Wiezel, Avi (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2014
153346-Thumbnail Image.png
Description
This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact

This thesis presents research on innovative AC transmission design concepts and focused mathematics for electric power transmission design. The focus relates to compact designs, high temperature low sag conductors, and high phase order design. The motivation of the research is to increase transmission capacity with limited right of way.

Regarding compact phase spacing, insight into the possibility of increasing the security rating of transmission lines is the primary focus through increased mutual coupling and decreased positive sequence reactance. Compact design can reduce the required corridor width to as little as 31% of traditional designs, especially with the use of inter-phase spacers. Typically transmission lines are built with conservative clearances, with difficulty obtaining right of way, more compact phase spacing may be needed. With design consideration significant compaction can produce an increase by 5-25% in the transmission line security (steady state stability) rating. In addition, other advantages and disadvantages of compact phase design are analyzed. Also, the next two topics: high temperature low sag conductors and high phase order designs include the use of compact designs.

High temperature low sag (HTLS) conductors are used to increase the thermal capacity of a transmission line up to two times the capacity compared to traditional conductors. HTLS conductors can operate continuously at 150-210oC and in emergency at 180-250oC (depending on the HTLS conductor). ACSR conductors operate continuously at 50-110oC and in emergency conditions at 110-150oC depending on the utility, line, and location. HTLS conductors have decreased sag characteristics of up to 33% compared to traditional ACSR conductors at 100oC and up to 22% at 180oC. In addition to what HTLS has to offer in terms of the thermal rating improvement, the possibility of using HTLS conductors to indirectly reduce tower height and compact the phases to increase the security limit is investigated. In addition, utilizing HTLS conductors to increase span length and decrease the number of transmission towers is investigated. The phase compaction or increased span length is accomplished by utilization of the improved physical sag characteristics of HTLS conductors.

High phase order (HPO) focuses on the ability to increase the power capacity for a given right of way. For example, a six phase line would have a thermal rating of approximately 173%, a security rating of approximately 289%, and the SIL would be approximately 300% of a double circuit three phase line with equal right of way and equal voltage line to line. In addition, this research focuses on algorithm and model development of HPO systems. A study of the impedance of HPO lines is presented. The line impedance matrices for some high phase order configurations are circulant Toeplitz matrices. Properties of circulant matrices are developed for the generalized sequence impedances of HPO lines. A method to calculate the sequence impedances utilizing unique distance parameter algorithms is presented. A novel method to design the sequence impedances to specifications is presented. Utilizing impedance matrices in circulant form, a generalized form of the sequence components transformation matrix is presented. A generalized voltage unbalance factor in discussed for HPO transmission lines. Algorithms to calculate the number of fault types and number of significant fault types for an n-phase system are presented. A discussion is presented on transposition of HPO transmission lines and a generalized fault analysis of a high phase order circuit is presented along with an HPO analysis program.

The work presented has the objective of increasing the use of rights of way for bulk power transmission through the use of innovative transmission technologies. The purpose of this dissertation is to lay down some of the building blocks and to help make the three technologies discussed practical applications in the future.
ContributorsPierre, Brian J (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Shunk, Dan (Committee member) / Vittal, Vijay (Committee member) / Arizona State University (Publisher)
Created2015
150133-Thumbnail Image.png
Description
ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible

ABSTRACT Facility managers have an important job in today's competitive business world by caring for the backbone of the corporation's capital. Maintaining assets and the support efforts cause facility managers to fight an uphill battle to prove the worth of their organizations. This thesis will discuss the important and flexible use of measurement and leadership reports and the benefits of justifying the work required to maintain or upgrade a facility. The task is streamlined by invoking accountability to subject experts. The facility manager must trust in the ability of his or her work force to get the job done. However, with accountability comes increased risk. Even though accountability may not alleviate total control or cease reactionary actions, facility managers can develop key leadership based reports to reassign accountability and measure subject matter experts while simultaneously reducing reactionary actions leading to increased cost. Identifying and reassigning risk that are not controlled to subject matter experts is imperative for effective facility management leadership and allows facility managers to create an accurate and solid facility management plan, supports the organization's succession plan, and allows the organization to focus on key competencies.
ContributorsTellefsen, Thor (Author) / Sullivan, Kenneth (Thesis advisor) / Kashiwagi, Dean (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2011
150605-Thumbnail Image.png
Description
Human resources have always been the most critical factor in the construction industry, and now, with a historic generation entering the age of retirement, the construction industry needs to place greater effort in preparing for the succession of their most important of human resource, their leaders. A significant body of

Human resources have always been the most critical factor in the construction industry, and now, with a historic generation entering the age of retirement, the construction industry needs to place greater effort in preparing for the succession of their most important of human resource, their leaders. A significant body of research has shown that succession planning minimizes the negative effects that come with leadership transition; however, little research has focused specifically on the construction industry. The majority of construction companies are family owned or have small pools of potential successors, which make them more susceptible to the negative impacts that occur with poor planning for succession. The objective of this research focuses on developing a methodology that will assist construction companies plan and prepare for a leadership transition. Data is gathered from case studies of twelve construction companies that have recently experienced leadership succession. The data is analyzed for practices and characteristics that correlate to successful leadership transitions. Through the findings in the literature review and data analysis of the case studies, the research successfully achieves the objective of developing a potential methodology for increasing the effectiveness of succession planning in a construction company.
ContributorsPerrenoud, Anthony (Author) / Sullivan, Kenneth T. (Thesis advisor) / Badger, William (Committee member) / Schleifer, Thomas (Committee member) / Arizona State University (Publisher)
Created2012