Matching Items (299)
Filtering by

Clear all filters

Description
Analytics are being collected on a day to day basis on just about anything that you can think of. Sports is one of the recent fields that has started implementing the tool into their game. Analytics can be described as an abundance of statistical information that show situational

Analytics are being collected on a day to day basis on just about anything that you can think of. Sports is one of the recent fields that has started implementing the tool into their game. Analytics can be described as an abundance of statistical information that show situational tendencies of other teams and players. It is hypothesized that analytics provide anticipatory information that allows athletes to know what is coming; therefore, allowing them to perform better in real game scenarios. However, it is unclear how this information should be presented to athletes and whether athletes can actually retain the abundance of information given to them. Two different types of presentation methods (Numeric and Numeric plus Graph) and two different amounts of analytic information (High and Low) were compared for baseball players in an online based baseball specific retention survey: High Numeric (excess information shown in spreadsheet format), Low Numeric (key information shown in spreadsheet format), High Numeric plus Graph (excess information shown as a spreadsheet with hitting zone maps), and Low Numeric plus Graph (key information shown as a spreadsheet with hitting zone maps). Athletes produced different retention scores for the type of presentation method given across the whole study. Athletes presented analytic as Numeric plus Graph performed better than athletes in just Numeric condition. Additionally, playing experience had a significant effect on an athlete’s ability to retain analytic information. Athletes with 10 plus years of baseball experience performed better in every condition other than High Numeric plus Graph compared to athletes with less than 10 years of experience. Amount and experience also had an interaction effect that produced statistical significance; those with less experience performed better in conditions with less baseball information given whereas those with more experience were able to handle more baseball information at once. Providing analytic information gives athletes, especially baseball batters, a significant advantage over their opponent; however, ability to retain analytic information depends on how the information is presented and to whom the information is being presented.
ContributorsGin, Andrew B (Author) / Gray, Robert (Thesis advisor) / Cooke, Nancy J. (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2020
158779-Thumbnail Image.png
Description
The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB)

The primary goal of this thesis is to evaluate the influence of ethyl vinyl acetate (EVA) and polyolefin elastomer (POE) encapsulant types on the glass-glass (GG) photovoltaic (PV) module reliability. The influence of these two encapsulant types on the reliability of GG modules was compared with baseline glass-polymer backsheet (GB) modules for a benchmarking purpose. Three sets of modules, with four modules in each set, were constructed with two substrates types i.e. glass-glass (GG) and glass- polymer backsheet (GB); and 2 encapsulants types i.e. ethyl vinyl acetate (EVA) and polyolefin elastomer (POE). Each module set was subjected to the following accelerated tests as specified in the International Electrotechnical Commission (IEC) standard and Qualification Plus protocol of NREL: Ultraviolet (UV) 250 kWh/m2; Thermal Cycling (TC) 200 cycles; Damp Heat (DH) 1250 hours. To identify the failure modes and reliability issues of the stressed modules, several module-level non-destructive characterizations were carried out and they include colorimetry, UV-Vis-NIR spectral reflectance, ultraviolet fluorescence (UVF) imaging, electroluminescence (EL) imaging, and infrared (IR) imaging. The above-mentioned characterizations were performed on the front side of the modules both before the stress tests (i.e. pre-stress) and after the stress tests (i.e. post-stress). The UV-250 extended stress results indicated slight changes in the reflectance on the non-cell area of EVA modules probably due to minor adhesion loss at the cell and module edges. From the DH-1250 extended stress tests, significant changes, in both encapsulant types modules, were observed in reflectance and UVF images indicating early stages of delamination. In the case of the TC-200 stress test, practically no changes were observed in all sets of modules. From the above short-term stress tests, it appears although not conclusive at this stage of the analysis, delamination seems to be the only failure mode that could possibly be affecting the module performance, as observed from UV and DH extended stress tests. All these stress tests need to be continued to identify the wear-out failure modes and their impacts on the performance parameters of PV modules.
ContributorsBhaskaran, Rahul (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2020
158781-Thumbnail Image.png
Description
ABSTRACT
Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted

ABSTRACT
Academic literature and industry benchmarking reports were reviewed to determine the way facilities benchmarking reports were perceived in the healthcare industry. Interviews were conducted through a Delphi panel of industry professionals who met experience and other credential requirements. Two separate rounds of interviewing were conducted where each candidate was asked the same questions to determine the current views of benchmarking reports and associated data in the healthcare industry. The questions asked in the second round were developed from the answers to the first-round questions. The research showed the panel preferred changes in the data collection methods as well as changes in the way the data is presented. The need for these changes was unanimous among the members of the panel. The main recommendations among the group were:
1. An interactive method such as a member portal with the ability to customize, run scenarios, and save data is the preferred method.
2. Facilities Management (FM) teams are often not included in the data collection of the benchmark reports. Including FM groups would allow more accuracy and more detailed data resulting in more accurate and in-depth reports.
3. More consistency and “apples to apples” comparisons need to be provided in the reports. More categories and variables need to be added to the reports to offer more in depth comparisons and assessments between buildings. Identifiers to help the users compare the physical condition of their facility to others needs to be included. Suggestions are as follows:
a. Facility Condition Index (FCI)- easily available to all participants and allows an idea of the comparison of upkeep and maintenance of their facility to that of others.
b. An indicator on whether the comparison buildings are Centers for Medicare and Medicaid Services (CMS) accredited.
4. Gross Square Footage (GSF) is not an accurate assessment on its own. Too many variables are left unidentified to offer an accurate assessment with this method alone.
ContributorsChalmers, Jeffrey (Author) / Sullivan, Kenneth (Thesis advisor) / Smithwick, Jake (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2020
158450-Thumbnail Image.png
Description
In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in

In the current photovoltaic (PV) industry, the O&M (operations and maintenance) personnel in the field primarily utilize three approaches to identify the underperforming or defective modules in a string: i) EL (electroluminescence) imaging of all the modules in the string; ii) IR (infrared) thermal imaging of all the modules in the string; and, iii) current-voltage (I-V) curve tracing of all the modules in the string. In the first and second approaches, the EL images are used to detect the modules with broken cells, and the IR images are used to detect the modules with hotspot cells, respectively. These two methods may identify the modules with defective cells only semi-qualitatively, but not accurately and quantitatively. The third method, I-V curve tracing, is a quantitative method to identify the underperforming modules in a string, but it is an extremely time consuming, labor-intensive, and highly ambient conditions dependent method. Since the I-V curves of individual modules in a string are obtained by disconnecting them individually at different irradiance levels, module operating temperatures, angle of incidences (AOI) and air-masses/spectra, all these measured curves are required to be translated to a single reporting condition (SRC) of a single irradiance, single temperature, single AOI and single spectrum. These translations are not only time consuming but are also prone to inaccuracy due to inherent issues in the translation models. Therefore, the current challenges in using the traditional I-V tracers are related to: i) obtaining I-V curves simultaneously of all the modules and substrings in a string at a single irradiance, operating temperature, irradiance spectrum and angle of incidence due to changing weather parameters and sun positions during the measurements, ii) safety of field personnel when disconnecting and reconnecting of cables in high voltage systems (especially field aged connectors), and iii) enormous time and hardship for the test personnel in harsh outdoor climatic conditions. In this thesis work, a non-contact I-V (NCIV) curve tracing tool has been integrated and implemented to address the above mentioned three challenges of the traditional I-V tracers.

This work compares I-V curves obtained using a traditional I-V curve tracer with the I-V curves obtained using a NCIV curve tracer for the string, substring and individual modules of crystalline silicon (c-Si) and cadmium telluride (CdTe) technologies. The NCIV curve tracer equipment used in this study was integrated using three commercially available components: non-contact voltmeters (NCV) with voltage probes to measure the voltages of substrings/modules in a string, a hall sensor to measure the string current and a DAS (data acquisition system) for simultaneous collection of the voltage data obtained from the NCVs and the current data obtained from the hall sensor. This study demonstrates the concept and accuracy of the NCIV curve tracer by comparing the I-V curves obtained using a traditional capacitor-based tracer and the NCIV curve tracer in a three-module string of c-Si modules and of CdTe modules under natural sunlight with uniform light conditions on all the modules in the string and with partially shading one or more of the modules in the string to simulate and quantitatively detect the underperforming module(s) in a string.
ContributorsMurali, Sanjay (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
158524-Thumbnail Image.png
Description
A framework to obtain the failure surface of a unidirectional composite which can be used as an input for Generalized Tabulated Failure Criterion in MAT_213 – an orthotropic elasto-plastic material model implemented in LS-DYNA, a commercial finite element program, is discussed in this research. A finite element model consisting of

A framework to obtain the failure surface of a unidirectional composite which can be used as an input for Generalized Tabulated Failure Criterion in MAT_213 – an orthotropic elasto-plastic material model implemented in LS-DYNA, a commercial finite element program, is discussed in this research. A finite element model consisting of the fiber and the matrix is generated using the Virtual Testing Software System (VTSS) developed at Arizona State University (ASU). The framework is illustrated using the T800-F3900 unidirectional composite material manufactured by Toray Composites. The T800S fiber is modeled using MAT_213. The F3900 matrix phase is modeled using MAT_187-SAMP1. The response of the virtual tests in 1-direction tension, 1-direction compression, 2-direction tension, 2-direction compression and 2-1 plane shear are verified against the results obtained from experiments performed under quasi-static and room temperature conditions (QS-RT). Finally, a roadmap to generate the failure surface using virtual test is proposed.
ContributorsParakhiya, Yatin (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobahser, Barzin (Committee member) / Hoover, Christian (Committee member) / Arizona State University (Publisher)
Created2020
158477-Thumbnail Image.png
Description
This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work

This graduate thesis explains and discusses the background, methods, limitations, and future work of developing a low-budget, variable-length, Arduino-based robotics professional development program (PDP) for middle school or high school classrooms. This graduate thesis builds on prior undergraduate thesis work and conclusions. The main conclusions from the undergraduate thesis work focused on reaching a larger teacher population along with providing a more robust robot design and construction. The end goal of this graduate thesis is to develop a PDP that reaches multiple teachers, involves a more robust robot design, and lasts beyond this developmental year. There have been many similar research studies and PDPs that have been tested and analyzed but do not fit the requirements of this graduate thesis. These programs provide some guidance in the creation of a new PDP. The overall method of the graduate thesis comes in four main phases: 1) setup, 2) pre-PDP phase, 3) PDP phase, and 4) post PDP phase. The setup focused primarily on funding, IRB approval, research, timeline development, and research question creation. The pre-PDP phase focused primarily on the development of new tailored-to-teacher content, a more robust robot design, and recruitment of participants. The PDP phase primarily focused on how the teachers perform and participate in the PDP. Lastly, the post PDP phase involved data analysis along with a resource development plan. The last post-PDP step is to consolidate all of the findings in a clear, concise, and coherent format for future work.
Contributorslerner, jonah (Author) / Carberry, Adam (Thesis advisor) / Walters, Molina (Committee member) / Jordan, Shawn (Committee member) / Arizona State University (Publisher)
Created2020
158261-Thumbnail Image.png
Description
The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a

The presence of huge amounts of waste heat and the constant demand for electric energy makes this an appreciable research topic, yet at present there is no commercially viable technology to harness the inherent energy resource provided by the temperature differential between the inside and outside of buildings. In a newly developed technology, electricity is generated from the temperature gradient between building walls through a Seebeck effect. A 3D-printed triply periodic minimal surface (TPMS) structure is sandwiched in copper electrodes with copper (I) sulphate (Cu2SO4) electrolyte to mimic a thermogalvanic cell. Previous studies mainly concentrated on mechanical properties and the electric power generation ability of these structures; however, the goal of this study is to estimate the thermal resistance of the 3D-printed TPMS experimentally. This investigation elucidates their thermal resistances which in turn helps to appreciate the power output associated in the thermogalvanic structure. Schwarz P, Gyroid, IWP, and Split P geometries were considered for the experiment with electrolyte in the thermogalvanic brick. Among these TPMS structures, Split P was found more thermally resistive than the others with a thermal resistance of 0.012 m2 K W-1. The thermal resistances of Schwarz D and Gyroid structures were also assessed experimentally without electrolyte and the results are compared to numerical predictions in a previous Mater's thesis.
ContributorsDasinor, Emmanuel (Author) / Phelan, Patrick (Thesis advisor) / Milcarek, Ryan (Committee member) / Bhate, Dhruv (Committee member) / Arizona State University (Publisher)
Created2020
158193-Thumbnail Image.png
Description
Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based

Energy is one of the wheels on which the modern world runs. Therefore, standards and limits have been devised to maintain the stability and reliability of the power grid. This research shows a simple methodology for increasing the amount of Inverter-based Renewable Generation (IRG), which is also known as Inverter-based Resources (IBR), for that considers the voltage and frequency limits specified by the Western Electricity Coordinating Council (WECC) Transmission Planning (TPL) criteria, and the tie line power flow limits between the area-under-study and its neighbors under contingency conditions. A WECC power flow and dynamic file is analyzed and modified in this research to demonstrate the performance of the methodology. GE's Positive Sequence Load Flow (PSLF) software is used to conduct this research and Python was used to analyze the output data.

The thesis explains in detail how the system with 11% of IRG operated before conducting any adjustments (addition of IRG) and what procedures were modified to make the system run correctly. The adjustments made to the dynamic models are also explained in depth to give a clearer picture of how each adjustment affects the system performance. A list of proposed IRG units along with their locations were provided by SRP, a power utility in Arizona, which were to be integrated into the power flow and dynamic files. In the process of finding the maximum IRG penetration threshold, three sensitivities were also considered, namely, momentary cessation due to low voltages, transmission vs. distribution connected solar generation, and stalling of induction motors. Finally, the thesis discusses how the system reacts to the aforementioned modifications, and how IRG penetration threshold gets adjusted with regards to the different sensitivities applied to the system.
ContributorsAlbhrani, Hashem A M H S (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2020
158346-Thumbnail Image.png
Description
Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of

Photocatalytic activity of titanium dioxide (titania or TiO2) offers enormous potential in solving energy and environmental problems. Immobilization of titania nanoparticles on inert substrates is an effective way of utilizing its photocatalytic activity since nanoparticles enable high mass-transport, and immobilization avoids post-treatment separation. For competitive photocatalytic performance, the morphology of the substrate can be engineered to enhance mass-transport and light accessibility. In this work, two types of fiber architectures (i.e., dispersed polymer/titania phase or D-phase, and multi-phase polymer-core/composite-shell fibers or M-phase) were explored as effective substrate solutions for anchoring titania. These fibers were fabricated using a low-cost and scalable fiber spinning technique. Polymethyl methacrylate (PMMA) was selected as the substrate material due to its ultraviolet (UV) transparency and stability against oxidative radicals. The work systematically investigates the influence of the fiber porosity on mass-transport and UV light scattering. The properties of the fabricated fiber systems were characterized by scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), UV-vis spectrophotometry (UV-vis), and mechanical analysis. The photocatalytic performance was characterized by monitoring the decomposition of methylene blue (MB) under UV (i.e., 365 nm) light. Fabrication of photocatalytic support structures was observed to be an optimization problem where porosity improved mass transport but reduced UV accessibility. The D-phase fibers demonstrated the highest MB degradation rate (i.e., 0.116 min-1) due to high porosity (i.e., 33.2 m2/g). The M-phase fibers reported a better degradation rate compared to a D-phase fibers due to higher UV accessibility efficiency.
ContributorsKanth, Namrata (Author) / Song, Kenan (Thesis advisor) / Tongay, Sefaattin (Thesis advisor) / Kannan, Arunachala Mada (Committee member) / Arizona State University (Publisher)
Created2020
158333-Thumbnail Image.png
Description
About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research

About 20-50% of industrial processes energy is lost as waste heat in their operations. The thermal hydraulic engine relies on the thermodynamic properties of supercritical carbon dioxide (CO2) to efficiently perform work. Carbon dioxide possesses great properties that makes it a safe working fluid for the engine’s applications. This research aims to preliminarily investigate the actual efficiency which can be obtained through experimental data and compare that to the Carnot or theoretical maximum efficiency. The actual efficiency is investigated through three approaches. However, only the efficiency results from the second method are validated since the other approaches are based on a complete actual cycle which was not achieved for the engine. The efficiency of the thermal hydraulic engine is found to be in the range of 0.5% to 2.2% based on the second method which relies on the boundary work by the piston. The heating and cooling phases of the engine’s operation are viewed on both the T-s (temperature-entropy) and p-v (pressure-volume) diagrams. The Carnot efficiency is also found to be 13.7% from a temperature difference of 46.20C based on the measured experimental data. It is recommended that the thermodynamic cycle and efficiency investigation be repeated using an improved heat exchanger design to reduce energy losses and gains during both the heating and cooling phases. The temperature of CO2 can be measured through direct contact with the thermocouple and pressure measurements can be improved using a digital pressure transducer for the thermodynamic cycle investigation.
ContributorsManford, David (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Arizona State University (Publisher)
Created2020