Matching Items (5)
Filtering by

Clear all filters

155837-Thumbnail Image.png
Description
With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code on its multi cored SIMT (Single instruction multiple thread) architecture.

With the advent of GPGPU, many applications are being accelerated by using CUDA programing paradigm. We are able to achieve around 10x -100x speedups by simply porting the application on to the GPU and running the parallel chunk of code on its multi cored SIMT (Single instruction multiple thread) architecture. But for optimal performance it is necessary to make sure that all the GPU resources are efficiently used, and the latencies in the application are minimized. For this, it is essential to monitor the Hardware usage of the algorithm and thus diagnose the compute and memory bottlenecks in the implementation. In the following thesis, we will be analyzing the mapping of CUDA implementation of BLIINDS-II algorithm on the underlying GPU hardware, and come up with a Kepler architecture specific solution of using shuffle instruction via CUB library to tackle the two major bottlenecks in the algorithm. Experiments were conducted to convey the advantage of using shuffle instru3ction in algorithm over only using shared memory as a buffer to global memory. With the new implementation of BLIINDS-II algorithm using CUB library, a speedup of around 13.7% was achieved.
ContributorsWadekar, Ameya (Author) / Sohoni, Sohum (Thesis advisor) / Aukes, Daniel (Committee member) / Redkar, Sangram (Committee member) / Arizona State University (Publisher)
Created2017
187805-Thumbnail Image.png
Description
In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for

In nature, some animals have an exoskeleton that provides protection, strength, and stability to the organism, but in engineering, an exoskeleton refers to a device that augments or aids human ability. However, the method of controlling these devices has been a challenge historically. Depending on the objective, control systems for exoskeletons have ranged from devices as simple spring-loaded systems to using sensors such as electromyography (EMG). Despite EMGs being very common, force sensing resistors (FSRs) can be used instead. There are multiple types of exoskeletons that target different areas of the human body, and the targeted area depends on the need of the device. Usually, the devices are developed for either medical or military usage; for this project, the focus is on medical development of an automated elbow joint to assist in rehabilitation. This thesis is a continuation of my ASU Barrett honors thesis, Upper-Extremity Exoskeleton. While working on my honors thesis, I helped develop a design for an upper extremity exoskeleton based on the Wilmer orthosis design for Mayo Clinic. Building upon the design of an orthosis, for the master’s thesis, I developed an FSR control system that is designed using a Wheatstone bridge circuit that can provide a clean reliable signal as compared to the current EMG setup.
ContributorsCarlton, Bryan (Author) / Sugar, Thomas (Thesis advisor) / Aukes, Daniel (Committee member) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2023
161712-Thumbnail Image.png
Description
This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low

This dissertation studies the methods to enhance the performance of foldable robots manufactured by laminated techniques. This class of robots are unique in their manufacturing process, which involves cutting and staking up thin layers of different materials with various stiffness. While inheriting the advantages of soft robots -- low weight, affordable manufacturing cost and a fast prototyping process -- a wider range of actuators is available to these mechanisms, while modeling their behavior requires less computational cost.The fundamental question this dissertation strives to answer is how to decode and leverage the effect of material stiffness in these robots. These robots' stiffness is relatively limited due to their slender design, specifically at larger scales. While compliant robots may have inherent advantages such as being safer to work around, this low rigidity makes modeling more complex. This complexity is mostly contained in material deformation since the conventional actuators such as servo motors can be easily leveraged in these robots. As a result, when introduced to real-world environments, efficient modeling and control of these robots are more achievable than conventional soft robots. Various approaches have been taken to design, model, and control a variety of laminate robot platforms by investigating the effect of material deformation in prototypes while they interact with their working environments. The results obtained show that data-driven approaches such as experimental identification and machine learning techniques are more reliable in modeling and control of these mechanisms. Also, machine learning techniques for training robots in non-ideal experimental setups that encounter the uncertainties of real-world environments can be leveraged to find effective gaits with high performance. Our studies on the effect of stiffness of thin, curved sheets of materials has evolved into introducing a new class of soft elements which we call Soft, Curved, Reconfigurable, Anisotropic Mechanisms (SCRAMs). Like bio-mechanical systems, SCRAMs are capable of re-configuring the stiffness of curved surfaces to enhance their performance and adaptability. Finally, the findings of this thesis show promising opportunities for foldable robots to become an alternative for conventional soft robots since they still offer similar advantages in a fraction of computational expense.
ContributorsSharifzadeh, Mohammad (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
131479-Thumbnail Image.png
Description
This thesis presents a kit of materials intended to present students with a glimpse of what engineering entails by guiding them through building engineering projects similar to what is in the real world. The objective of this project is to pique the interest of children by introducing them to lesser

This thesis presents a kit of materials intended to present students with a glimpse of what engineering entails by guiding them through building engineering projects similar to what is in the real world. The objective of this project is to pique the interest of children by introducing them to lesser known engineering related topics, and increasing their literacy of terms and methods engineers use to solve problems. The effectiveness of the kit’s content and teaching methods was tested in a classroom of 6th graders and was measured using the responses from surveys handed out. I found that kit did in fact positively lead to a change in the way the students perceived engineering, and it taught students about new engineering related topics. Students were capable of completing difficult tasks of wiring and coding successfully through the use of detailed instruction. However, the instructions were seen in two opposing views of either being too overwhelming or more guidance was necessary.
ContributorsQuezada, Hebellyn Arleth (Author) / Aukes, Daniel (Thesis director) / Kellam, Nadia (Committee member) / Engineering Programs (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
164468-Thumbnail Image.png
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis director) / Marvi, Hamidreza (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2022-05