Matching Items (6)
Filtering by

Clear all filters

152260-Thumbnail Image.png
Description
Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival

Autonomous vehicle control systems utilize real-time kinematic Global Navigation Satellite Systems (GNSS) receivers to provide a position within two-centimeter of truth. GNSS receivers utilize the satellite signal time of arrival estimates to solve for position; and multipath corrupts the time of arrival estimates with a time-varying bias. Time of arrival estimates are based upon accurate direct sequence spread spectrum (DSSS) code and carrier phase tracking. Current multipath mitigating GNSS solutions include fixed radiation pattern antennas and windowed delay-lock loop code phase discriminators. A new multipath mitigating code tracking algorithm is introduced that utilizes a non-symmetric correlation kernel to reject multipath. Independent parameters provide a means to trade-off code tracking discriminant gain against multipath mitigation performance. The algorithm performance is characterized in terms of multipath phase error bias, phase error estimation variance, tracking range, tracking ambiguity and implementation complexity. The algorithm is suitable for modernized GNSS signals including Binary Phase Shift Keyed (BPSK) and a variety of Binary Offset Keyed (BOC) signals. The algorithm compensates for unbalanced code sequences to ensure a code tracking bias does not result from the use of asymmetric correlation kernels. The algorithm does not require explicit knowledge of the propagation channel model. Design recommendations for selecting the algorithm parameters to mitigate precorrelation filter distortion are also provided.
ContributorsMiller, Steven (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2013
152897-Thumbnail Image.png
Description
In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of

In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of full-duplex relays is limited by the strong self-interference caused by the coupling of relay's own transit signals to its desired received signals. Several techniques have been proposed in literature to mitigate the relay self-interference. In this thesis, the performance of in-band full-duplex multiple-input multiple-output (MIMO) relays is considered in the context of simultaneous communications and channel estimation. In particular, adaptive spatial transmit techniques is considered to protect the full-duplex radio's receive array. It is assumed that relay's transmit and receive antenna phase centers are physically distinct. This allows the radio to employ adaptive spatial transmit and receive processing to mitigate self-interference.

The performance of this protection is dependent upon numerous factors, including channel estimation accuracy, which is the focus of this thesis. In particular, the concentration is on estimating the self-interference channel. A novel approach of simultaneous signaling to estimate the self-interference channel in MIMO full-duplex relays is proposed. To achieve this simultaneous communications

and channel estimation, a full-rank pilot signal at a reduced relative power is transmitted simultaneously with a low rank communication waveform. The self-interference mitigation is investigated in the context of eigenvalue spread of spatial relay receive co-variance matrix. Performance is demonstrated by using simulations,

in which orthogonal-frequency division-multiplexing communications and pilot sequences are employed.
ContributorsSekhar, Kishore Kumar (Author) / Bliss, Daniel W (Thesis advisor) / Kitchen, Jennifer (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2014
152886-Thumbnail Image.png
Description
As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on

As the number of devices with wireless capabilities and the proximity of these devices to each other increases, better ways to handle the interference they cause need to be explored. Also important is for these devices to keep up with the demand for data rates while not compromising on industry established expectations of power consumption and mobility. Current methods of distributing the spectrum among all participants are expected to not cope with the demand in a very near future. In this thesis, the effect of employing sophisticated multiple-input, multiple-output (MIMO) systems in this regard is explored. The efficacy of systems which can make intelligent decisions on the transmission mode usage and power allocation to these modes becomes relevant in the current scenario, where the need for performance far exceeds the cost expendable on hardware. The effect of adding multiple antennas at either ends will be examined, the capacity of such systems and of networks comprised of many such participants will be evaluated. Methods of simulating said networks, and ways to achieve better performance by making intelligent transmission decisions will be proposed. Finally, a way of access control closer to the physical layer (a 'statistical MAC') and a possible metric to be used for such a MAC is suggested.
ContributorsThontadarya, Niranjan (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2014
154112-Thumbnail Image.png
Description
In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that

In this thesis, an approach to develop low-frequency accelerometer based on molecular electronic transducers (MET) in an electrochemical cell is presented. Molecular electronic transducers are a class of inertial sensors which are based on an electrochemical mechanism. Motion sensors based on MET technology consist of an electrochemical cell that can be used to detect the movement of liquid electrolyte between electrodes by converting it to an output current. Seismometers based on MET technology are attractive for planetary applications due to their high sensitivity, low noise, small size and independence on the direction of sensitivity axis. In addition, the fact that MET based sensors have a liquid inertial mass with no moving parts makes them rugged and shock tolerant (basic survivability has been demonstrated to >20 kG).

A Zn-Cu electrochemical cell (Galvanic cell) was applied in the low-frequency accelerometer. Experimental results show that external vibrations (range from 18 to 70 Hz) were successfully detected by this accelerometer as reactions Zn→〖Zn〗^(2+)+2e^- occurs around the anode and 〖Cu〗^(2+)+2e^-→Cu around the cathode. Accordingly, the sensitivity of this MET device design is to achieve 10.4 V/G at 18 Hz. And the sources of noise have been analyzed.
ContributorsZhao, Zuofeng (Author) / Yu, Hongyu (Thesis advisor) / Zhang, Junshan (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2015
161584-Thumbnail Image.png
Description
Low frequency oscillations (LFOs) are recognized as one of the most challenging problems in electric grids as they limit power transfer capability and can result in system instability. In recent years, the deployment of phasor measurement units (PMUs) has increased the accessibility to time-synchronized wide-area measurements, which has, in turn,

Low frequency oscillations (LFOs) are recognized as one of the most challenging problems in electric grids as they limit power transfer capability and can result in system instability. In recent years, the deployment of phasor measurement units (PMUs) has increased the accessibility to time-synchronized wide-area measurements, which has, in turn, enabledthe effective detection and control of the oscillatory modes of the power system. This work assesses the stability improvements that can be achieved through the coordinated wide-area control of power system stabilizers (PSSs), static VAr compensators (SVCs), and supplementary damping controllers (SDCs) of high voltage DC (HVDC) lines, for damping electromechanical oscillations in a modern power system. The improved damping is achieved by designing different types of coordinated wide-area damping controllers (CWADC) that employ partial state-feedback. The first design methodology uses a linear matrix inequality (LMI)-based mixed H2/Hinfty control that is robust for multiple operating scenarios. To counteract the negative impact of communication failure or missing PMU measurements on the designed control, a scheme to identify the alternate set of feedback signals is proposed. Additionally, the impact of delays on the performance of the control design is investigated. The second approach is motivated by the increasing popularity of artificial intelligence (AI) in enhancing the performance of interconnected power systems. Two different wide-area coordinated control schemes are developed using deep neural networks (DNNs) and deep reinforcement learning (DRL), while accounting for the uncertainties present in the power system. The DNN-CWADC learns to make control decisions using supervised learning; the training dataset consisting of polytopic controllers designed with the help of LMI-based mixed H2/Hinfty optimization. The DRL-CWADC learns to adapt to the system uncertainties based on its continuous interaction with the power system environment by employing an advanced version of the state-of-the-art deep deterministic policy gradient (DDPG) algorithm referred to as bounded exploratory control-based DDPG (BEC-DDPG). The studies performed on a 29 machine, 127 bus equivalent model of theWestern Electricity Coordinating Council (WECC) system-embedded with different types of damping controls have demonstrated the effectiveness and robustness of the proposed CWADCs.
ContributorsGupta, Pooja (Author) / Pal, Anamitra (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Zhang, Junshan (Committee member) / Hedmnan, Mojdeh (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2021
161788-Thumbnail Image.png
Description
Collision-free path planning is also a major challenge in managing unmanned aerial vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV routing policies using multi-agent reinforcement learning has been considered, and propose a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named 3M-RL, for flight planning, where multiple vehicles need

Collision-free path planning is also a major challenge in managing unmanned aerial vehicles (UAVs) fleets, especially in uncertain environments. The design of UAV routing policies using multi-agent reinforcement learning has been considered, and propose a Multi-resolution, Multi-agent, Mean-field reinforcement learning algorithm, named 3M-RL, for flight planning, where multiple vehicles need to avoid collisions with each other while moving towards their destinations. In this system, each UAV makes decisions based on local observations, and does not communicate with other UAVs. The algorithm trains a routing policy using an Actor-Critic neural network with multi-resolution observations, including detailed local information and aggregated global information based on mean-field. The algorithm tackles the curse-of-dimensionality problem in multi-agent reinforcement learning and provides a scalable solution. The proposed algorithm is tested in different complex scenarios in both 2D and 3D space and the simulation results show that 3M-RL result in good routing policies. Also as a compliment, dynamic data communications between UAVs and a control center has also been studied, where the control center needs to monitor the safety state of each UAV in the system in real time, where the transition of risk level is simply considered as a Markov process. Given limited communication bandwidth, it is impossible for the control center to communicate with all UAVs at the same time. A dynamic learning problem with limited communication bandwidth is also discussed in this paper where the objective is to minimize the total information entropy in real-time risk level tracking. The simulations also demonstrate that the algorithm outperforms policies such as a Round & Robin policy.
ContributorsWang, Weichang (Author) / Ying, Lei (Thesis advisor) / Liu, Yongming (Thesis advisor) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2021