Matching Items (5)
Filtering by

Clear all filters

150289-Thumbnail Image.png
Description
A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual

A primary motivation of research in photovoltaic technology is to obtain higher efficiency photovoltaic devices at reduced cost of production so that solar electricity can be cost competitive. The majority of photovoltaic technologies are based on p-n junction, with efficiency potential being much lower than the thermodynamic limits of individual technologies and thereby providing substantial scope for further improvements in efficiency. The thesis explores photovoltaic devices using new physical processes that rely on thin layers and are capable of attaining the thermodynamic limit of photovoltaic technology. Silicon heterostructure is one of the candidate technologies in which thin films induce a minority carrier collecting junction in silicon and the devices can achieve efficiency close to the thermodynamic limits of silicon technology. The thesis proposes and experimentally establishes a new theory explaining the operation of silicon heterostructure solar cells. The theory will assist in identifying the optimum properties of thin film materials for silicon heterostructure and help in design and characterization of the devices, along with aiding in developing new devices based on this technology. The efficiency potential of silicon heterostructure is constrained by the thermodynamic limit (31%) of single junction solar cell and is considerably lower than the limit of photovoltaic conversion (~ 80 %). A further improvement in photovoltaic conversion efficiency is possible by implementing a multiple quasi-fermi level system (MQFL). A MQFL allows the absorption of sub band gap photons with current being extracted at a higher band-gap, thereby allowing to overcome the efficiency limit of single junction devices. A MQFL can be realized either by thin epitaxial layers of alternating higher and lower band gap material with nearly lattice matched (quantum well) or highly lattice mismatched (quantum dot) structure. The thesis identifies the material combination for quantum well structure and calculates the absorption coefficient of a MQFl based on quantum well. GaAsSb (barrier)/InAs(dot) was identified as a candidate material for MQFL using quantum dot. The thesis explains the growth mechanism of GaAsSb and the optimization of GaAsSb and GaAs heterointerface.
ContributorsGhosha, Kuṇāla (Author) / Bowden, Stuart (Thesis advisor) / Honsberg, Christiana (Thesis advisor) / Vasileska, Dragica (Committee member) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151142-Thumbnail Image.png
Description
This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on

This dissertation addresses challenges pertaining to multi-junction (MJ) solar cells from material development to device design and characterization. Firstly, among the various methods to improve the energy conversion efficiency of MJ solar cells using, a novel approach proposed recently is to use II-VI (MgZnCd)(SeTe) and III-V (AlGaIn)(AsSb) semiconductors lattice-matched on GaSb or InAs substrates for current-matched subcells with minimal defect densities. CdSe/CdTe superlattices are proposed as a potential candidate for a subcell in the MJ solar cell designs using this material system, and therefore the material properties of the superlattices are studied. The high structural qualities of the superlattices are obtained from high resolution X-ray diffraction measurements and cross-sectional transmission electron microscopy images. The effective bandgap energies of the superlattices obtained from the photoluminescence (PL) measurements vary with the layer thicknesses, and are smaller than the bandgap energies of either the constituent material. Furthermore, The PL peak position measured at the steady state exhibits a blue shift that increases with the excess carrier concentration. These results confirm a strong type-II band edge alignment between CdSe and CdTe. The valence band offset between unstrained CdSe and CdTe is determined as 0.63 eV±0.06 eV by fitting the measured PL peak positions using the Kronig-Penney model. The blue shift in PL peak position is found to be primarily caused by the band bending effect based on self-consistent solutions of the Schrödinger and Poisson equations. Secondly, the design of the contact grid layout is studied to maximize the power output and energy conversion efficiency for concentrator solar cells. Because the conventional minimum power loss method used for the contact design is not accurate in determining the series resistance loss, a method of using a distributed series resistance model to maximize the power output is proposed for the contact design. It is found that the junction recombination loss in addition to the series resistance loss and shadowing loss can significantly affect the contact layout. The optimal finger spacing and maximum efficiency calculated by the two methods are close, and the differences are dependent on the series resistance and saturation currents of solar cells. Lastly, the accurate measurements of external quantum efficiency (EQE) are important for the design and development of MJ solar cells. However, the electrical and optical couplings between the subcells have caused EQE measurement artifacts. In order to interpret the measurement artifacts, DC and small signal models are built for the bias condition and the scan of chopped monochromatic light in the EQE measurements. Characterization methods are developed for the device parameters used in the models. The EQE measurement artifacts are found to be caused by the shunt and luminescence coupling effects, and can be minimized using proper voltage and light biases. Novel measurement methods using a pulse voltage bias or a pulse light bias are invented to eliminate the EQE measurement artifacts. These measurement methods are nondestructive and easy to implement. The pulse voltage bias or pulse light bias is superimposed on the conventional DC voltage and light biases, in order to control the operating points of the subcells and counterbalance the effects of shunt and luminescence coupling. The methods are demonstrated for the first time to effectively eliminate the measurement artifacts.
ContributorsLi, Jingjing (Author) / Zhang, Yong-Hang (Thesis advisor) / Tao, Meng (Committee member) / Schroder, Dieter (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012
156824-Thumbnail Image.png
Description
Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via

Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures.

As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The main objective of my thesis work has been to establish a deep understanding of both “intrinsic” and “extrinsic” recombination processes that govern performance in high-quality silicon absorbers. By studying each recombination mechanism as a function of illumination and temperature, I strive to identify the lifetime limiting defects and propose a path to engineer the ultimate silicon solar cell.

This dissertation presents a detailed description of the experimental procedure required to deconvolute surface recombination contributions from bulk recombination contributions when performing lifetime spectroscopy analysis. This work proves that temperature- and injection-dependent lifetime spectroscopy (TIDLS) sensitivity can be extended to impurities concentrations down to 109 cm-3, orders of magnitude below any other characterization technique available today. A new method for the analysis of TIDLS data denominated Defect Parameters Contour Mapping (DPCM) is presented with the aim of providing a visual and intuitive tool to identify the lifetime limiting impurities in silicon material. Surface recombination velocity results are modelled by applying appropriate approaches from literature to our experimentally evaluated data, demonstrating for the first time their capability to interpret temperature-dependent data. In this way, several new results are obtained which solve long disputed aspects of surface passivation mechanisms. Finally, we experimentally evaluate the temperature-dependence of Auger lifetime and its impact on a theoretical intrinsically limited solar cell. These results decisively point to the need for a new Auger lifetime parameterization accounting for its temperature-dependence, which would in turn help understand the ultimate theoretical efficiency limit for a solar cell under real operation conditions.
ContributorsBernardini, Simone (Author) / Bertoni, Mariana I (Thesis advisor) / Coletti, Gianluca (Committee member) / Bowden, Stuart (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2018
155905-Thumbnail Image.png
Description
It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial

It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch (~0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells.

Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si.

In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM).

The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation during GaP epitaxial growth on Si by MBE were proposed. To achieve high performance of GaP/Si solar cells, different GaP/Si structures were designed, fabricated and compared, including GaP as a hetero-emitter, GaP as a heterojunction on the rear side, inserting passivation membrane layers at the GaP/Si interface, and GaP/wet-oxide functioning as a passivation contact. A designed of a-Si free carrier-selective contact MoOx/Si/GaP solar cells demonstrated 14.1% power conversion efficiency.
ContributorsZhang, Chaomin (Author) / Honsberg, Christiana (Thesis advisor) / King, Richard (Thesis advisor) / Goodnick, Stephen (Committee member) / Faleev, Nikolai (Committee member) / Bowden, Stuart (Committee member) / Arizona State University (Publisher)
Created2017
161954-Thumbnail Image.png
Description
In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide

In this dissertation, the nanofabrication process is characterized for fabrication of nanostructure on surface of silicon and gallium phosphide using silica nanosphere lithography (SNL) and metal assisted chemical etching (MACE) process. The SNL process allows fast process time and well defined silica nanosphere monolayer by spin-coating process after mixing N,N-dimethyl-formamide (DMF) solvent. The MACE process achieves the high aspect ratio structure fabrication using the reaction between metal and wet chemical. The nanostructures are fabricated on Si surface for enhanced light management, but, without proper surface passivation those gains hardly impact the performance of the solar cell. The surface passivation of nanostructures is challenging, not only due to larger surface areas and aspect ratios, but also has a direct result of the nanofabrication processes. In this research, the surface passivation of silicon nanostructures is improved by modifying the silica nanosphere lithography (SNL) and the metal assisted chemical etching (MACE) processes, frequently used to fabricate nanostructures. The implementation of a protective silicon oxide layer is proposed prior to the lithography process to mitigate the impact of the plasma etching during the SNL. Additionally, several adhesion layers are studied, chromium (Cr), nickel (Ni) and titanium (Ti) with gold (Au), used in the MACE process. The metal contamination is one of main damage and Ti makes the mitigation of metal contamination. Finally, a new chemical etching step is introduced, using potassium hydroxide at room temperature, to smooth the surface of the nanostructures after the MACE process. This chemical treatment allows to improve passivation by surface area control and removing surface defects. In this research, I demonstrate the Aluminum Oxide (Al2O3) passivation on nanostructure using atomic layer deposition (ALD) process. 10nm of Al2O3 layer makes effective passivation on nanostructure with optimized post annealing in forming gas (N2/H2) environment. However, 10nm thickness is not suitable for hetero structure because of carrier transportation. For carrier transportation, ultrathin Al2O3 (≤ 1nm) layer is used for passivation, but effective passivation is not achieved because of insufficient hydrogen contents. This issue is solved to use additional ultrathin SiO2 (1nm) below Al2O3 layer and hydrogenation from doped a-Si:H. Moreover, the nanostructure is creased on gallium phosphide (GaP) by SNL and MACE process. The fabrication process is modified by control of metal layer and MACE solution.
ContributorsKim, Sangpyeong (Author) / Honsberg, Christiana (Thesis advisor) / Bowden, Stuart (Committee member) / Goryll, Michael (Committee member) / Augusto, Andre (Committee member) / Arizona State University (Publisher)
Created2021