Matching Items (717)
Filtering by

Clear all filters

158723-Thumbnail Image.png
Description
This dissertation explores the use of deterministic scheduling theory for the design and development of practical manufacturing scheduling strategies as alternatives to current scheduling methods, particularly those used to minimize completion times and increase system capacity utilization. The efficient scheduling of production systems can make the difference between a thriving

This dissertation explores the use of deterministic scheduling theory for the design and development of practical manufacturing scheduling strategies as alternatives to current scheduling methods, particularly those used to minimize completion times and increase system capacity utilization. The efficient scheduling of production systems can make the difference between a thriving and a failing enterprise, especially when expanding capacity is limited by the lead time or the high cost of acquiring additional manufacturing resources. A multi-objective optimization (MOO) resource constrained parallel machine scheduling model with setups, machine eligibility restrictions, release and due dates with user interaction is developed for the scheduling of complex manufacturing systems encountered in the semiconductor and plastic injection molding industries, among others. Two mathematical formulations using the time-indexed Integer Programming (IP) model and the Diversity Maximization Approach (DMA) were developed to solve resource constrained problems found in the semiconductor industry. A heuristic was developed to find fast feasible solutions to prime the IP models. The resulting models are applied in two different ways: constructing schedules for tactical decision making and constructing Pareto efficient schedules with user interaction for strategic decision making aiming to provide insight to decision makers on multiple competing objectives.
Optimal solutions were found by the time-indexed IP model for 45 out of 45 scenarios in less than one hour for all the problem instance combinations where setups were not considered. Optimal solutions were found for 18 out of 45 scenarios in less than one hour for several combinations of problem instances with 10 and 25 jobs for the hybrid (IP and heuristic) model considering setups. Regarding the DMA MOO scheduling model, the complete efficient frontier (9 points) was found for a small size problem instance in 8 minutes, and a partial efficient frontier (29 points) was found for a medium sized problem instance in 183 hrs.
ContributorsMunoz-Estrada, Luis Fernando (Author) / Villalobos, Jesus R (Thesis advisor) / Fowler, John (Thesis advisor) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2020
158745-Thumbnail Image.png
Description
Prior research has provided evidence to suggest that veterans exhibit unique assets that benefit them in engineering education and engineering industry. However, there is little evidence to determine whether their assets are due to military service or other demographic factors such as age, maturity, or gender. The aim of this

Prior research has provided evidence to suggest that veterans exhibit unique assets that benefit them in engineering education and engineering industry. However, there is little evidence to determine whether their assets are due to military service or other demographic factors such as age, maturity, or gender. The aim of this study is to discover, better understand, and disseminate the unique assets that veterans gained through military service and continue to employ as engineering students or professional engineers. This strength-based thematic analysis investigated the semi-structured narrative interviews of 18 military veterans who are now engineering students or professionals in engineering industry. Using the Funds of Knowledge framework, veterans’ Funds of Knowledge were identified and analyzed for emergent themes. Participants exhibited 10 unique veterans’ Funds of Knowledge. Utilizing analytical memos, repeated reflection, and iterative analysis, two overarching themes emerged, Effective Teaming in Engineering and Adapting to Overcome Challenges. Additionally, a niche concept of Identity Crafting was explored using the unique narratives of two participants. This study provides empirical evidence of military veterans experientially learning valuable assets in engineering from their military service. A better understanding of the veterans’ Funds of Knowledge presented in this study provides valuable opportunities for their utilization in engineering education and engineering industry.
ContributorsSheppard, Michael Scott (Author) / Kellam, Nadia N (Thesis advisor) / Bekki, Jennifer M (Committee member) / Brunhaver, Samantha R (Committee member) / Arizona State University (Publisher)
Created2020
158655-Thumbnail Image.png
Description
A defining feature of many United States (U.S.) doctoral engineering programs is their large proportion of international students. Despite the large student body and the significant impacts that they bring to the U.S. education and economy, a scarcity of research on engineering doctoral students has taken into consideration the existence

A defining feature of many United States (U.S.) doctoral engineering programs is their large proportion of international students. Despite the large student body and the significant impacts that they bring to the U.S. education and economy, a scarcity of research on engineering doctoral students has taken into consideration the existence of international students and the consequential diversity in citizenship among all students. This study was designed to bridge the research gap to improve the understanding of sense of belonging from the perspective of international engineering doctoral students.

A multi-phase mixed methods research approach was taken for this study. The qualitative strand focused on international engineering doctoral students’ sense of belonging and its constructs. Semi-structured interview data were collected from eight international students enrolled at engineering doctoral programs at four different institutions. Thematic analysis and further literature review produced a conceptual structure of sense of belonging among international engineering doctoral students: authentic-self, problem behavior, academic self-efficacy, academic belonging, sociocultural belonging, and perceived institutional support.

The quantitative strand of this study broadened the study’s population to all engineering doctoral students, including domestic students, and conducted comparative analyses between international and domestic student groups. An instrument to measure the Engineering Doctoral Students’ Quality of Interaction (EDQI instrument) was developed while considering the multicultural nature of interactions and the discipline-specific characteristics of engineering doctoral programs. Survey data were collected from 653 engineering doctoral students (383 domestic and 270 international) at 36 R1 institutions across the U.S. Exploratory Factor Analysis results confirmed the construct validity and reliability of the data collected from the instrument and indicated the factor structures for the students’ perceived quality interactions among domestic and international student groups. A set of separate regression analyses results indicated the significance of having meaningful interactions to students’ sense of belonging and identified the groups of people who make significant impacts on students’ sense of belonging for each subgroup. The emergent findings provide an understanding of the similarities and differences in the contributors of sense of belonging between international and domestic students, which can be used to develop tailored support structures for specific student groups.
ContributorsLee, Eunsil (Author) / Bekki, Jennifer (Thesis advisor) / Carberry, Adam (Thesis advisor) / Kellam, Nadia (Committee member) / Arizona State University (Publisher)
Created2020
158792-Thumbnail Image.png
Description
Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from

Access to real-time situational information including the relative position and motion of surrounding objects is critical for safe and independent travel. Object or obstacle (OO) detection at a distance is primarily a task of the visual system due to the high resolution information the eyes are able to receive from afar. As a sensory organ in particular, the eyes have an unparalleled ability to adjust to varying degrees of light, color, and distance. Therefore, in the case of a non-visual traveler, someone who is blind or low vision, access to visual information is unattainable if it is positioned beyond the reach of the preferred mobility device or outside the path of travel. Although, the area of assistive technology in terms of electronic travel aids (ETA’s) has received considerable attention over the last two decades; surprisingly, the field has seen little work in the area focused on augmenting rather than replacing current non-visual travel techniques, methods, and tools. Consequently, this work describes the design of an intuitive tactile language and series of wearable tactile interfaces (the Haptic Chair, HaptWrap, and HapBack) to deliver real-time spatiotemporal data. The overall intuitiveness of the haptic mappings conveyed through the tactile interfaces are evaluated using a combination of absolute identification accuracy of a series of patterns and subjective feedback through post-experiment surveys. Two types of spatiotemporal representations are considered: static patterns representing object location at a single time instance, and dynamic patterns, added in the HaptWrap, which represent object movement over a time interval. Results support the viability of multi-dimensional haptics applied to the body to yield an intuitive understanding of dynamic interactions occurring around the navigator during travel. Lastly, it is important to point out that the guiding principle of this work centered on providing the navigator with spatial knowledge otherwise unattainable through current mobility techniques, methods, and tools, thus, providing the \emph{navigator} with the information necessary to make informed navigation decisions independently, at a distance.
ContributorsDuarte, Bryan Joiner (Author) / McDaniel, Troy (Thesis advisor) / Davulcu, Hasan (Committee member) / Li, Baoxin (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2020
158817-Thumbnail Image.png
Description
Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units.

Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is very difficult to gather such data in a real-world setting. For example, in certain medical/healthcare applications, it is very challenging to have access to data from all possible scenarios or with the necessary amount of variations as required to train the system. Additionally, the over-parameterized and unconstrained nature of deep neural networks can cause them to be poorly trained and in many cases over-confident which, in turn, can hamper their reliability and generalizability. This dissertation is a compendium of my research efforts to address the above challenges. I propose building invariant feature representations by wedding concepts from topological data analysis and Riemannian geometry, that automatically incorporate the desired invariance properties for different computer vision applications. I discuss how deep learning can be used to address some of the common challenges faced when working with topological data analysis methods. I describe alternative learning strategies based on unsupervised learning and transfer learning to address issues like dataset shifts and limited training data. Finally, I discuss my preliminary work on applying simple orthogonal constraints on deep learning feature representations to help develop more reliable and better calibrated models.
ContributorsSom, Anirudh (Author) / Turaga, Pavan (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020
158818-Thumbnail Image.png
Description
The alternative project delivery methods (APDMs) today are being increasingly used by owner organizations in the architecture, engineering, and construction (AEC) industry. Yet the adoption of these methods can be extremely difficult to accomplish and requires significant change management efforts. To facilitate the APDM adoption, this research aimed to better

The alternative project delivery methods (APDMs) today are being increasingly used by owner organizations in the architecture, engineering, and construction (AEC) industry. Yet the adoption of these methods can be extremely difficult to accomplish and requires significant change management efforts. To facilitate the APDM adoption, this research aimed to better understand how AEC owner organizations have changed from only using the design-bid-build method to also successfully implementing APDMs from an organizational change perspective. This research utilized a literature review, survey and interviews to fulfill the research objectives. The dissertation follows a three paper format. The first paper focuses on identifying organizational change management (OCM) practices that, when effectively executed, lead to increased success rates of adopting APDMs in owner AEC organizations. The results of the first paper indicated that the five OCM practices with the strongest correlations to successful APDM adoption were realistic timeframe, effective change agents, workload adjustments, senior-leadership commitment, and sufficient change-related training. The second paper focuses on investigating AEC employees’ reactions to the adoption of APDMs. The findings of the second paper revealed that employees in AEC organizations react favorably to adopting a change in their project delivery systems. The findings further revealed that increasing the use of OCM practices is related to decreased employee resistance to change. The third paper aimed to provide guidelines detailing on how to lead APDM adoption. The findings of the third paper indicated that there was a general sequence of four implementation phases, which were preparing and planning, pilot project testing, expanding to the intended scale, and sustaining and evaluating. The phases include specific OCM practices that increase the probability of successful APDM adoption. The dissertation results can help in guiding the senior managers of construction organizations and OCM consultants to effectively implement APDMs for the first time in the construction sector.
ContributorsAldossari, Khaled Medath (Author) / Sullivan, Kenneth T. (Thesis advisor) / Hurtado, Kristen C (Committee member) / Standage, Richard (Committee member) / Arizona State University (Publisher)
Created2020
158822-Thumbnail Image.png
Description
Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by

Deformable heat exchangers could provide a multitude of previously untapped advantages ranging from adaptable performance via macroscale, dynamic shape change (akin to dilation/constriction seen in blood vessels) to enhanced heat transfer at thermal interfaces through microscale, surface deformations. So far, making deformable, ‘soft heat exchangers’ (SHXs) has been limited by the low thermal conductivity of materials with suitable mechanical properties. The recent introduction of liquid-metal embedded elastomers by Bartlett et al1 has addressed this need. Specifically, by remaining soft and stretchable despite the addition of filler, these thermally conductive composites provide an ideal material for the new class of “soft thermal systems”, which is introduced in this work. Understanding such thermal systems will be a key element in enabling technology that require high levels of stretchability, such as thermoregulatory garments, soft electronics, wearable electronics, and high-powered robotics. Shape change inherent to SHX operation has the potential to violate many conventional assumptions used in HX design and thus requires the development of new theoretical approaches to predict performance. To create a basis for understanding these devices, this work highlights two sequential studies. First, the effects of transitioning to a surface deformable, SHX under steady state static conditions in the setting of a liquid cooling device for thermoregulation, electronics and robotics applications was explored. In this study, a thermomechanical model was built and validated to predict the thermal performance and a system wide analysis to optimize such devices was carried out. Second, from a more fundamental perspective, the effects of SHXs undergoing transient shape deformation during operation was explored. A phase shift phenomenon in cooling performance dependent on stretch rate, stretch extent and thermal diffusivity was discovered and explained. With the use of a time scale analysis, the extent of quasi-static assumption viability in modeling such systems was quantified and multiple shape modulation regime limits were defined. Finally, nuance considerations and future work of using liquid metal-silicone composites in SHXs were discussed.
ContributorsKotagama, Praveen (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Phelan, Patrick (Committee member) / Herrmann, Marcus (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2020
158890-Thumbnail Image.png
Description
Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In

Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In contrast to capitalistic hardware production, Open Design practitioners publicly share design files, blueprints and knowhow through various channels including internet platforms and in-person workshops. These designs are typically replicated, modified, improved and reshared by individuals and groups who are broadly referred to as ‘makers’.

This dissertation aims to expand the current scope of Open Design within human-computer interaction (HCI) research through a long-term exploration of Open Design’s socio-technical processes. I examine Open Design from three perspectives: the functional—materials, tools, and platforms that enable crowd-driven open hardware production, the critical—materially-oriented engagements within open design as a site for sociotechnical discourse, and the speculative—crowd-driven critical envisioning of future hardware.

More specifically, this dissertation first explores the growing global scene of Open Design through a long-term ethnographic study of the open science hardware (OScH) movement, a genre of Open Design. This long-term study of OScH provides a focal point for HCI to deeply understand Open Design's growing global landscape. Second, it examines the application of Critical Making within Open Design through an OScH workshop with designers, engineers, artists and makers from local communities. This work foregrounds the role of HCI researchers as facilitators of collaborative critical engagements within Open Design. Third, this dissertation introduces the concept of crowd-driven Design Fiction through the development of a publicly accessible online Design Fiction platform named Dream Drones. Through a six month long development and a study with drone related practitioners, it offers several pragmatic insights into the challenges and opportunities for crowd-driven Design Fiction. Through these explorations, I highlight the broader implications and novel research pathways for HCI to shape and be shaped by the global Open Design movement.
ContributorsFernando, Kattak Kuttige Rex Piyum (Author) / Kuznetsov, Anastasia (Thesis advisor) / Turaga, Pavan (Committee member) / Middel, Ariane (Committee member) / Takamura, John (Committee member) / Arizona State University (Publisher)
Created2020
158893-Thumbnail Image.png
Description
Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale

Investigation into research literature was conducted in order to understand the impacts of traditional concrete construction and explore recent advancements in 3D printing technologies and methodologies. The research project focuses on the relationship between computer modeling, testing, and verification to reduce concrete usage in flexural elements. The project features small-scale and large-scale printing applications modelled by finite element analysis software and printed for laboratory testing. The laboratory testing included mortar cylinder testing, digital image correlation (DIC), and four pointbending tests. Results demonstrated comparable performance between casted, printed solid, and printed optimized flexural elements. Results additionally mimicked finite element models regarding failure regions.
ContributorsBjelland, Aidan D (Author) / Neithalath, Narayanan (Thesis advisor) / Hoover, Christian (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2020
158870-Thumbnail Image.png
Description
This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2

This research focuses mainly on employing tunable materials to achieve dynamic radiative properties for spacecraft and building thermal management. A secondary objective is to investigate tunable materials for optical propulsion applications. The primary material investigated is vanadium dioxide (VO2), which is a thermochromic material with an insulator-to-metal phase transition. VO2 typically undergoes a dramatic shift in optical properties at T = 341 K, which can be reduced through a variety of techniques to a temperature more suitable for thermal control applications. A VO2-based Fabry-Perot variable emitter is designed, fabricated, characterized, and experimentally demonstrated. The designed emitter has high emissivity when the radiating surface temperature is above 345 K and low emissivity when the temperature is less than 341 K. A uniaxial transfer matrix method and Bruggeman effective medium theory are both introduced to model the anisotropic properties of the VO2 to facilitate the design of multilayer VO2-based devices. A new furnace oxidation process is developed for fabricating high quality VO2 and the resulting thin films undergo comprehensive material and optical characterizations. The corresponding measurement platform is developed to measure the temperature-dependent transmittance and reflectance of the fabricated Fabry-Perot samples. The variable heat rejection of the fabricated samples is demonstrated via bell jar and cryothermal vacuum calorimetry measurements. Thermal modeling of a spacecraft equipped with variable emittance radiators is also conducted to elucidate the requirements and the impact for thermochromic variable emittance technology.
The potential of VO2 to be used as an optical force modulating device is also investigated for spacecraft micropropulsion. The preliminary design considers a Fabry-Perot cavity with an anti-reflection coating which switches between an absorptive “off” state (for insulating VO2) and a reflective “on” state (for metallic VO2), thereby modulating the incident solar radiation pressure. The visible and near-infrared optical properties of the fabricated vanadium dioxide are examined to determine if there is a sufficient optical property shift in those regimes for a tunable device.
ContributorsTaylor, Sydney June (Author) / Wang, Liping (Thesis advisor) / Wells, Valana (Committee member) / Yu, Hongbin (Committee member) / Wang, Robert (Committee member) / Thangavelautham, Jekanthan (Committee member) / Massina, Christopher J (Committee member) / Arizona State University (Publisher)
Created2020