Matching Items (805)
Filtering by

Clear all filters

151534-Thumbnail Image.png
Description
Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and

Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.
ContributorsPatterson, Maxx (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Macia, Narciso (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2013
152535-Thumbnail Image.png
Description
Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision making before they encounter real life

Virtual Patient Simulations (VPS) are web-based exercises involving simulated patients in virtual environments. This study investigates the utility of VPS for increasing medical student clinical reasoning skills, collaboration, and engagement. Many studies indicate that VPS provide medical students with essential practice in clinical decision making before they encounter real life patients. The utility of a recursive, inductive VPS for increasing clinical decision-making skills, collaboration, or engagement is unknown. Following a design-based methodology, VPS were implemented in two phases with two different cohorts of first year medical students: spring and fall of 2013. Participants were 108 medical students and six of their clinical faculty tutors. Students collaborated in teams of three to complete a series of virtual patient cases, submitting a ballpark diagnosis at the conclusion of each session. Student participants subsequently completed an electronic, 28-item Exit Survey. Finally, students participated in a randomized controlled trial comparing traditional (tutor-led) and VPS case instruction methods. This sequence of activities rendered quantitative and qualitative data that were triangulated during data analysis to increase the validity of findings. After practicing through four VPS cases, student triad teams selected accurate ballpark diagnosis 92 percent of the time. Pre-post test results revealed that PPT was significantly more effective than VPS after 20 minutes of instruction. PPT instruction resulted in significantly higher learning gains, but both modalities supported significant learning gains in clinical reasoning. Students collaborated well and held rich clinical discussions; the central phenomenon that emerged was "synthesizing evidence inductively to make clinical decisions." Using an inductive process, student teams collaborated to analyze patient data, and in nearly all instances successfully solved the case, while remaining cognitively engaged. This is the first design-based study regarding virtual patient simulation, reporting iterative phases of implementation and design improvement, culminating in local theories (petite generalizations) about VPS design. A thick, rich description of environment, process, and findings may benefit other researchers and institutions in designing and implementing effective VPS.
ContributorsMcCoy, Lise (Author) / Wetzel, Keith (Thesis advisor) / Ewbank, Ann (Thesis advisor) / Simon, Harvey (Committee member) / Arizona State University (Publisher)
Created2014
152543-Thumbnail Image.png
Description
The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage

The Solid State Transformer (SST) is an essential component in the FREEDM system. This research focuses on the modeling of the SST and the controller hardware in the loop (CHIL) implementation of the SST for the support of the FREEDM system demonstration. The energy based control strategy for a three-stage SST is analyzed and applied. A simplified average model of the three-stage SST that is suitable for simulation in real time digital simulator (RTDS) has been developed in this study. The model is also useful for general time-domain power system analysis and simulation. The proposed simplified av-erage model has been validated in MATLAB and PLECS. The accuracy of the model has been verified through comparison with the cycle-by-cycle average (CCA) model and de-tailed switching model. These models are also implemented in PSCAD, and a special strategy to implement the phase shift modulation has been proposed to enable the switching model simulation in PSCAD. The implementation of the CHIL test environment of the SST in RTDS is described in this report. The parameter setup of the model has been discussed in detail. One of the dif-ficulties is the choice of the damping factor, which is revealed in this paper. Also the grounding of the system has large impact on the RTDS simulation. Another problem is that the performance of the system is highly dependent on the switch parameters such as voltage and current ratings. Finally, the functionalities of the SST have been realized on the platform. The distributed energy storage interface power injection and reverse power flow have been validated. Some limitations are noticed and discussed through the simulation on RTDS.
ContributorsJiang, Youyuan (Author) / Ayyanar, Raja (Thesis advisor) / Holbert, Keith E. (Committee member) / Chowdhury, Srabanti (Committee member) / Arizona State University (Publisher)
Created2014
152548-Thumbnail Image.png
Description
Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In

Humans are capable of transferring learning for anticipatory control of dexterous object manipulation despite changes in degrees-of-freedom (DoF), i.e., switching from lifting an object with two fingers to lifting the same object with three fingers. However, the role that tactile information plays in this transfer of learning is unknown. In this study, subjects lifted an L-shaped object with two fingers (2-DoF), and then lifted the object with three fingers (3-DoF). The subjects were divided into two groups--one group performed the task wearing a glove (to reduce tactile sensibility) upon the switch to 3-DoF (glove group), while the other group did not wear the glove (control group). Compensatory moment (torque) was used as a measure to determine how well the subject could minimize the tilt of the object following the switch from 2-DoF to 3-DoF. Upon the switch to 3-DoF, subjects wearing the glove generated a compensatory moment (Mcom) that had a significantly higher error than the average of the last five trials at the end of the 3-DoF block (p = 0.012), while the control subjects did not demonstrate a significant difference in Mcom. Additional effects of the reduction in tactile sensibility were: (1) the grip force for the group of subjects wearing the glove was significantly higher in the 3-DoF trials compared to the 2-DoF trials (p = 0.014), while the grip force of the control subjects was not significantly different; (2) the difference in centers of pressure between the thumb and fingers (ΔCoP) significantly increased in the 3-DoF block for the group of subjects wearing the glove, while the ΔCoP of the control subjects was not significantly different; (3) lastly, the control subjects demonstrated a greater increase in lift force than the group of subjects wearing the glove (though results were not significant). Combined together, these results suggest different force modulation strategies are used depending on the amount of tactile feedback that is available to the subject. Therefore, reduction of tactile sensibility has important effects on subjects' ability to transfer learned manipulation across different DoF contexts.
ContributorsGaw, Nathan (Author) / Helms Tillery, Stephen (Thesis advisor) / Santello, Marco (Committee member) / Kleim, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2014
152401-Thumbnail Image.png
Description
ABSTRACT Current federal and state education mandates were developed to make schools accountable for student performance with the rationale that schools, teachers, and students will improve through the administration of high-stakes tests. Public schools are mandated to adhere to three accountability systems: national, state, and local. Additional elements include the

ABSTRACT Current federal and state education mandates were developed to make schools accountable for student performance with the rationale that schools, teachers, and students will improve through the administration of high-stakes tests. Public schools are mandated to adhere to three accountability systems: national, state, and local. Additional elements include the recent implementation of the Common Core standards and newly devised state accountability systems that are granted through waivers as an alternative to the accountability mandates in the No Child Left Behind Act NCLB of 2001. Teachers' voices have been noticeably absent from the accountability debates, but as studies show, as primary recipients of accountability sanctions, many teachers withdraw, "burn out," or leave the profession altogether. The present study is based on the premise that teachers are vital to student achievement, and that their perspectives and understandings are therefore a resource for educational reform especially in light of the accountability mandates under NCLB. With that premise as a starting point, this dissertation examines practicing urban teachers' experiences of accountability in culturally and linguistically diverse schools. To fulfill these goals, this qualitative study used individual and focus group interviews and observations with veteran elementary school teachers in an urban Southwestern public school district, to ascertain practices they perceive to be effective. The study's significance lies in informing stakeholders, researchers, and policymakers of practicing teachers' input on accountability mandates in diverse urban schools.
ContributorsGishey, Rhiannon L (Author) / Mccarty, Teresa L (Thesis advisor) / Fischman, Gustavo E (Committee member) / Ikeler, Susan (Committee member) / Arizona State University (Publisher)
Created2013
152318-Thumbnail Image.png
Description
This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert"

This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed to the rural and urban surroundings of these two power plants.
ContributorsMallineni, Jaya Krishna (Author) / Govindasamy, Tamizhmani (Thesis advisor) / Devarajan, Srinivasan (Committee member) / Narciso, Macia (Committee member) / Arizona State University (Publisher)
Created2013
152321-Thumbnail Image.png
Description
In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real

In modern electric power systems, energy management systems (EMSs) are responsi-ble for monitoring and controlling the generation system and transmission networks. State estimation (SE) is a critical `must run successful' component within the EMS software. This is dictated by the high reliability requirements and need to represent the closest real time model for market operations and other critical analysis functions in the EMS. Tradi-tionally, SE is run with data obtained only from supervisory control and data acquisition (SCADA) devices and systems. However, more emphasis on improving the performance of SE drives the inclusion of phasor measurement units (PMUs) into SE input data. PMU measurements are claimed to be more accurate than conventional measurements and PMUs `time stamp' measurements accurately. These widely distributed devices meas-ure the voltage phasors directly. That is, phase information for measured voltages and currents are available. PMUs provide data time stamps to synchronize measurements. Con-sidering the relatively small number of PMUs installed in contemporary power systems in North America, performing SE with only phasor measurements is not feasible. Thus a hy-brid SE, including both SCADA and PMU measurements, is the reality for contemporary power system SE. The hybrid approach is the focus of a number of research papers. There are many practical challenges in incorporating PMUs into SE input data. The higher reporting rates of PMUs as compared with SCADA measurements is one of the salient problems. The disparity of reporting rates raises a question whether buffering the phasor measurements helps to give better estimates of the states. The research presented in this thesis addresses the design of data buffers for PMU data as used in SE applications in electric power systems. The system theoretic analysis is illustrated using an operating electric power system in the southwest part of the USA. Var-ious instances of state estimation data have been used for analysis purposes. The details of the research, results obtained and conclusions drawn are presented in this document.
ContributorsMurugesan, Veerakumar (Author) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
152586-Thumbnail Image.png
Description
The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the

The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the system to some determined number of r significant mode shapes. Current building codes, such as the American Society of Civil Engineers (ASCE), require certain class of structures to obtain 90% effective mass participation as a way to estimate the accuracy of a solution for base shear motion. A parametric study was performed from the collected data obtained by the analysis of a large number of framed structures. The purpose of this study was the development of rules for the required number of r significant modes to meet the ASCE code requirements. The study was based on the implementation of an algorithm and a computer program developed in the past. The algorithm is based on Householders Transformations, QR Factorization, and Inverse Iteration and it extracts a requested s (s<< n) number of predominate mode shapes and periods. Only the first r (r < s) of these modes are accurate. To verify the accuracy of the algorithm a variety of building frames have been analyzed using the commercially available structural software (RISA 3D) as a benchmark. The salient features of the algorithm are presented briefly in this study.
ContributorsGrantham, Jonathan (Author) / Fafitis, Apostolos (Thesis advisor) / Attard, Thomas (Committee member) / Houston, Sandra (Committee member) / Hjelmstad, Keith (Committee member) / Arizona State University (Publisher)
Created2014
152590-Thumbnail Image.png
Description
Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost

Access control is necessary for information assurance in many of today's applications such as banking and electronic health record. Access control breaches are critical security problems that can result from unintended and improper implementation of security policies. Security testing can help identify security vulnerabilities early and avoid unexpected expensive cost in handling breaches for security architects and security engineers. The process of security testing which involves creating tests that effectively examine vulnerabilities is a challenging task. Role-Based Access Control (RBAC) has been widely adopted to support fine-grained access control. However, in practice, due to its complexity including role management, role hierarchy with hundreds of roles, and their associated privileges and users, systematically testing RBAC systems is crucial to ensure the security in various domains ranging from cyber-infrastructure to mission-critical applications. In this thesis, we introduce i) a security testing technique for RBAC systems considering the principle of maximum privileges, the structure of the role hierarchy, and a new security test coverage criterion; ii) a MTBDD (Multi-Terminal Binary Decision Diagram) based representation of RBAC security policy including RHMTBDD (Role Hierarchy MTBDD) to efficiently generate effective positive and negative security test cases; and iii) a security testing framework which takes an XACML-based RBAC security policy as an input, parses it into a RHMTBDD representation and then generates positive and negative test cases. We also demonstrate the efficacy of our approach through case studies.
ContributorsGupta, Poonam (Author) / Ahn, Gail-Joon (Thesis advisor) / Collofello, James (Committee member) / Huang, Dijiang (Committee member) / Arizona State University (Publisher)
Created2014
152592-Thumbnail Image.png
Description
Public demands for accountability and educational change are at an all-time high. No Child Left Behind set the stage for public accountability of educators and the recently created Race to the Top grant raised the stakes of public school accountability even more with the creation of national standards and assessments

Public demands for accountability and educational change are at an all-time high. No Child Left Behind set the stage for public accountability of educators and the recently created Race to the Top grant raised the stakes of public school accountability even more with the creation of national standards and assessments as well as public accountability of individual teacher performance based on student test scores. This high-stakes context has placed pressure on local schools to change their instructional practices rapidly to ensure students are learning what they need to in order to perform well on looming Partnership for Assessment of Readiness for College and Careers (PARCC) exams. The purpose of this mixed methods action research study was to explore a shared leadership model and discover the impact of a change facilitation team using the Concerns Based Adoption Model tools on the speed and quality of innovation diffusion at a Title One elementary school. The nine-member change facilitation team received support for 20 weeks in the form of professional development and ongoing team coaching as a means to empower teacher-leaders to more effectively take on the challenges of change. Eight of those members participated in this research. This approach draws on the research on change, learning organizations, and coaching. Quantitative results from the Change Facilitator Stages of Concern Questionnaire were triangulated with qualitative data from interviews, field notes, and Innovation Configuration Maps. Results show the impact on instructional innovation when teacher-leadership is leveraged to support change. Further, there is an important role for change coaches when leading change initiatives. Implications from this study can be used to support other site leaders grappling with instructional innovation and calls for additional research.
ContributorsCruz, Jennifer (Author) / Zambo, Debby (Thesis advisor) / Foulger, Teresa (Committee member) / Tseunis, Paula (Committee member) / Arizona State University (Publisher)
Created2014